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1. Linear Algebra

In economics, it is very common to have systems of equations,

(1)

Qd = a0 + a1P

Qs = b0 + b1P

Qd − Qs = 0

We have supply, demand, and equilibrium. This is oozing economics, right? This problem can be expressed
in general as

Ax = d

with A some N × M matrix times a column vector x ∈ RM equal to some other vector d ∈ RN . The above
is matrix notation for the system

a11x1 = a12x2 + . . . + a1MxM = d1
...

aN1x1 = aN2x2 + . . . + aNMxM = dN
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With some wrangling, we can see that Equation (1) can be expressed in this way:
a0

b0

0


︸ ︷︷ ︸

d

=


−a1 1 0

−b1 0 1

0 1 −1


︸ ︷︷ ︸

A


P

Qd

Qs


︸ ︷︷ ︸

x

In this case, A is 3 × 3 and “invertible,” so we can explicitly solve for equilibrium price and quantity.
P

Qd

Qs

 =


−a1 1 0

−b1 0 1

0 1 −1


−1 

a0

b0

0




P

Qd

Qs

 =
1

det(A)



1 −1 −1

b1 −a1 −a1

b1 −a1 −b1




a0

b0

0




P

Qd

Qs

 =
1

b1 − a1


a0 − b0

a0b1 − a1b0

a0b1 − a1b0


We can check this is the same answer we’d get if we’d solve this by leveraging equilibrium:

a0 + a1P = b0 + b1P =⇒ P =
a0 − b0

b1 − a1

Then for quantity,

Qs = Qd = a0 + a1
a0 − b0

b1 − a1
=

a0b1 − a0a1 + a1a0 − a1b0

b1 − a1
=

a0b1 − a1b0

b1 − a1

In general, we find that

• If A is invertible1 (more on invertible matrices below) then there exists a unique solution given by
x∗ = A−1d.

• If M < N then in general there are no solutions (you have more equations than parameters; in general
it is not possible to satisfy all the equalities).

• If N < M then in general there are infinitely many solutions (you have more parameters than equations;
the additional parameters give you additional degrees of freedom).

1Note in this case N = M is necessary, but not sufficient.
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Hence it will be useful to study the properties of matrices and vectors, which are the building blocks of
these types of systems.

1.1. Vector Spaces.

Definition 1. A vector space V is a collection of objects called vectors endowed with

1. Addition.

2. Multiplication by scale.

Some additive properties of vector spaces:

1. Commutativity: v + w = w + v for any v, w ∈ V.

2. Associativity: (v + w) + u = v + (w + u) for any v, w ∈ V.

3. Additive identity: ∃0 ∈ V s.t. v + 0 = v for any v ∈ V (the 0 vector or the origin).

4. Additive inverse: ∀v ∈ V ∃ − v ∈ V s.t. v + (−v) = 0.

Some multiplicative properties of vector spaces:

1. Unit rule or multiplicative identity: 1v = v for any v ∈ V.

2. Multiplicative associativity: (αβ)v = α(βv) for any v ∈ V andα,β ∈ R.

3. Distributivity: For anyα,β ∈ R, v, w ∈ V, we have

α(u + v) = αu +αv and (α +β)v = αv +βv

Remark 1. If you are like me, you might think it’s a bit odd that we are making a big deal of associativity,
commutativity, and distributivity (like we did back in primary school). The reason is that a more formal
treatment of linear spaces would not take any of these properties for granted, and would be very careful in
discussing everything in this section (and henceforth) using just the definitions.

And if you are like me you might also wonder, why don’t we do that? We’ve done a lot of definition-theorem-
proof style lectures in this class. It is a math class after all. So why not here as well? The reason is that it
turns out that for all intents and purposes, vector spaces are equivalent to RN (or subsets therein). There is
a formal way of defining what that means and showing it; happy to provide details for the very curious, but
for this class I will simply discuss RN and I will take it to have the properties we expect.

Definition 2. Let V be a vector space and {v1, . . . vN} s.t. vi ∈ V. A linear combination of vi is given by

N

∑
i=1

αivi = α1v1 + . . . +αNvN

for some arbitrary set of coefficients {α1, . . . ,αN} s.t. αi ∈ R.

Remark 2. A vector space is a space that contains all its linear combinations. That is, for any {vi} with
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vi ∈ V and {αi} withαi ∈ R we have

N

∑
i=1

αivi ∈ V

if and only if V is a vector space. This is not obvious (and in a more formal treatment we would prove it
from the definitions), but it turns out one characterization of a vector space is a space that has all its linear
combinations. Hence the reason why vector spaces are also known as linear spaces.

Definition 3. Let V be a vector space. We have {vi} s.t. vi ∈ V is a basis of V if for every u ∈ V there exists
a unique linear combination of {vi} s.t.

u =
N

∑
i=1

αivi

The coefficients {αi} are called the coordinates of u in V with respect to the basis {vi}.

The easiest example of a basis is the standard basis in RN :

e1 =



1

0
...

0


e2 =



0

1
...

0


. . . eN =



0

0
...

1


Naturally any u ∈ RN can be uniquely represented as a linear combination of the standard basis if we take
{αi} = {ui} the coefficients equal each of the entries in u.

Definition 4. Let V be a vector space; we say that {vi} s.t. vi ∈ V is a spanning set of V if for every u ∈ V
there exists a linear combination of {vi} s.t.

u =
N

∑
i=1

αivi

Note that in the definition above, the linear combination does not have to be unique. Hence every basis of
a vector space V is a spanning set of V, but not every spanning set of V can be a basis. Hence the question:
When is a spanning set a basis?

Definition 5. A linear combination {αi} is called trivial ifαi = 0 for every i.

Definition 6. Let V be a vector space; we say that {vi} s.t. vi ∈ V are linearly independent if the only linear
combination of vi that is equal to 0 is trivial. That is

∑
i
αivi = 0 =⇒ αi = 0

Definition 7. Let V be a vector space; if {vi} s.t. vi ∈ V are not linearly independent, we say they are linearly
dependent.

Theorem 1. Let V be a vector space; {vi} s.t. vi ∈ V are linearly dependent if for some j and some linear
combination {β− j} we have that

v j = ∑
i ̸= j

βivi
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Proof. Take the linear combination {αi} s.t. αi = βi for i ̸= j andα j = −1. Then

∑
i
αivi = ∑

i ̸= j
βivi − v j = 0

Sinceα j ̸= 0, {αi} is non-trivial, and so {vi} are not linearly independent.

Theorem 2. Let V be a vector space; {vi} s.t. vi ∈ V are a basis for V ⇐⇒ {vi} are a linearly independent
spanning set of V.

Claim 1. Let {vi}, {ui} be any basis for a vector space V. Then |{vi}| = |{ui}|.

That is, basis for a vector space have the same number of elements. This leads to the following:

Definition 8. A vector space V has dimension dim(V) equal to the number of elements in any basis.

1.2. Linear Transformations.

Definition 9. Let V, W be vector spaces. T : V → W is a linear transformation if

T(αv + w) = αT(v) + T(w)

for any v ∈ V, w ∈ W,α ∈ R.

u

v

u + v

Figure 1: Example of a Linear Transformation

Theorem 3. Let V, W be vector spaces, T : V → W a linear transformation, and {vi} a basis for V. Then

T(v) = ∑
i
αiT(vi)

for v = ∑iαivi.

Proof. We have that

T(v) = T

(
∑

i
αivi

)
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We can then proceed by induction, using the properties of a linear transformation we saw above. Since V is
a linear space, it has all its linear combinations. Thusα1v1 ∈ V and ∑i>1αivi ∈ V. Applying the definition,

T(v) = T

(
α1v1 + ∑

i>1
αivi

)
= α1T (v1) + T

(
∑
i>1

αivi

)

Iterating the above:

T(v) = ∑
i<k

αiT (vi) + T

(
αkvk + ∑

i>k
αkvk

)
= ∑

i<k
αiT (vi) +αkT(vk) + T

(
∑
i>k

αkvk

)

Therefore we can simply write

T(v) = ∑
i
αiT (vi)

Theorem 4. Any linear transformation T : V → W can be represented by a matrix.

Proof. Let dim(V) = M ≤ N so V ⊆ RN . A matrix A is a collection of vectors {a1, . . . , aM} with ai ∈ W.
Now consider the standard basis {ei} for RN and take the subset of the standard basis that spans V. WLOG
take these to be the first M elements of the sandard basis. For any vector x ∈ V we find

T(x) = T

(
∑

i
xiei

)
= ∑

i
xiT (ei)

Let ai ≡ T(ei) and we can see that

T(x) = Ax = ∑
i

aixi

Hence T : V → W can be equivalently represented by A = [a1 · · · aM] with ai ∈ W.

Example 1. Consider the following operation

1 2 3

4 5 6




4

6

8

 = 4

1

4

+ 6

2

5

+ 8

3

6



Which we express as a linear transform

T(e1) =

1

4

 T(e2) =

2

5

 T(e3) =

3

6


That is,

T


4

6

8

 = 4T(e1) + 6T(e2) + 8T(e3)

6
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In general we can define matrix multiplication as linear operations on vector spaces:

AB = A[b1 . . . bN ] = [Ab1 . . . AbN ]

Some properties of matrix multiplication:

1. Associativity: (AB)C = A(BC)

2. Distributivity: A(B + C) = AB + AC

However, in general matrix multiplication is not commutative. That is, AB ̸= BA in general (in fact, BA
may not even be well-defined). Although matrix addition is commutative: A + B = B + A.

1.3. Matrix Inverse, Rank, and Determinant.

Definition 10. The vector space spanned by the columns of a matrix A is the column space of A. The rank
of a matrix, rank(A), is the dimension of the column space (the maximum number of linearly independent
columns).2 A square matrix N × N is called full-rank if rank(A) = N and rank-deficient if rank(A) < N.

Definition 11. A N × N matrix A is called diagonal if all its non-diagonal entries are 0.

Definition 12. The identity matrix is an N × N diagonal matrix with all diagonal entries equal to 1 (and
non-diagonal entries equal to 0). For any N × N matrix A, AI = IA = A.

I =



1 0 0 0

0 1 0 · · · 0

0 0 1 0
...

. . .
...

0 0 0 · · · 1


Definition 13. The N × N matrix A is said to be left invertible if ∃CL s.t. CL A = I the identity. We say it is
right invertible if ∃CR s.t. ACR = I. If A is left and right invertible with CL = CR, we say that A is invertible,
and we denote CR = CL = A−1 the inverse of A.3

Definition 14. If A is not invertible, we say that A is singular.

Theorem 5. Let A be a N × N matrix. A is invertible ⇐⇒ rank(A) = N.

Some other properties of the rank:

• rank(A) = rank(AT) = rank(AAT) = rank(AT A).

• rank(AB) ≤ min {rank(A), rank(B)}.

• rank(CAB) = rank(A) if C, B are non-singular.

2It turns out that the row-rank of a matrix, the maximum number of linearly independent rows, is the same as the column-rank of a
matrix. Hence we can just talk about the rank without clarifying row or column.
3The left and right inverses are the same for a square matrix if either exist, but this is a result, not an assumption. Further, note you can
define the left and right inverses for non-square matrices, but such matrices needn’t be invertible as only one of CL or CR might exist.
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Example 2. Can we find the inverse of the matrix

B =

2 1

1 1


using elementary row operations? 2 1

1 1
→

1 0

0 1


1 1/2

1 1
→

1/2 0

0 1


1 1/2

0 −1/2
→

1/2 0

1/2 −1


1 0

0 −1/2
→

1 −1

1/2 −1


1 0

0 1
→

1 −1

−1 2


The steps here were:

1. Multiply the first row by 1/2.

2. Multiply the second row by −1 and add the first row to the second row.

3. Add the second row to the first row.

4. Multiply the second row by −2.

In general, however, we have a shortcut for 2 × 2 matrices:

B =

a b

c d

 B−1 =
1

ad − bc

 d −b

−c a


You can check this formula gives exactly what we found using row operations.

Definition 15. The determinant of a N × N square matrix A is

det(A) =
N

∑
j=1

(−1)i+ jai j det(A−i,− j)

with i any fixed row of A (i.e. the same i for every j).

8
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Consider this picture:

v1

v2

v1 + v2

The set {
v : v =

N

∑
i=1

tivi ti ∈ [0, 1]

}

will give the parallelogram, and the determinant of V = [v1 · · · vN ] will be be the area of the parallelogram.
(Rather, the absolute value of the determinant; if the determinant is negative that just says something about
the direction of the vectors, but the intuition remains.) Some properties of the determinant:

• det(AB) = det(A) det(B).

• det(A) = ∏i aii if A is diagonal.

• det(I) = 1.

• det(αA) = αN det(A) for anyα ∈ R.

• det(A−1) = det(A)−1.

Another point to make about the determinant is that it is related to the rank, that is, whether the columns
(or rows) of a square matrix A are linearly independent.

1. If A has a column of row that is all 0, then det(A) = 0.

To see this, note that from the formula of the determinant, if we have a row or column of all 0s, then
each element of the sum will eventually be multiplied by 0, and the entire term will be 0. Alternatively,
if one of the “sides” of the parallelogram is between the origin and the origin, the area will be 0.

2. If A has two columns or rows that are equal, then det(A) = 0.

If two columns of A are equal, WLOG let them be the first two columns, consider the matrix P with all

9
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diagonal entries equal to 1 and all but one non-diagonal entries equal to 0. Let P21 = −1. That is,

P =



1 0 0 · · · 0

−1 1 0 · · · 0

0 0 1
...

...
. . .

0 1


What is AP? In this case, with A = [a1 a2 · · · aN ], we have

AP =

[
a1 − a2 a2 · · · aN

]
=

[
0 a2 · · · aN

]
with the first column equal to 0 since we assumed the first two columns were equal. Finally, we found
in the previous bullet that if a column was all 0s then the determinant was 0. Hence

0 = det(AP) = det(A) det(P) =⇒ det(A) = 0 or det(P) = 0

Note det(P) = 1, so it must be that det(A) = 0.

3. If A has a columns is a multiple of another column, then det(A) = 0.

Again WLOG suppose these are the first two columns and let A be as above. If a1 = αa2 then we can
define P almost identically, except P21 = −α. That is,

P =



1 0 0 · · · 0

−α 1 0 · · · 0

0 0 1
...

...
. . .

0 1


And again we have AP = [a1 −αa2 a2 · · · aN ] = [0 a2 · · · aN ]. Hence det(AP) = det(A) det(P) = 0,
but again we have det(P) = 1, so det(A) = 0.

4. If A has a columns or rows that are linearly dependent, then det(A) = 0.

This is really the point we wanted to make: A determinant of 0 is tied to the linear dependence of the
columns of A. This follows from the work we did above: In this case, ∃{αi} s.t. αi ̸= 0 for some i s.t.

a j = ∑
i ̸= j

αiai

10
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for some j. WLOG let j = 1, and the matrix P becomes

P =



1 0 0 · · · 0

−α2 1 0 · · · 0

−α3 0 1
...

...
. . .

−αN 1


So that

AP =

[
a1 −α2a2 −α3a3 . . . a2 · · · aN

]
=

[
a1 − ∑i ̸=1αiai a2 · · · aN

]
=

[
0 a2 · · · aN

]
So, one last time, det(AP) = det(A) det(P) = 0 and det(P) = 1 implies det(A) = 0.

Theorem 6. A is rank-deficient ⇐⇒ det(A) = 0.. Equivalently, A is non-invertible ⇐⇒ det(A) = 0.

Definition 16. For a N × N matrix A, the Mi j minor is the determinant of the (N − 1)× (N − 1) sub-matrix
obtained by deleting the ith row and jth column of A.

Definition 17. The i, j cofactor of the square N × N matrix A is given by

Ci j = (−1)i+ j Mi j

Note one way to write the determinant is as det(A) = ∑
N
j=1 ai jCi j for any given i.

Definition 18. The adjoint of an N × N matrix A is given by

adj(A) =


C11 C12 · · · C1N

...
. . . C1N

CN1 CN2 · · · CNN


Note the above is a matrix of scalars, since Ci j is the product of a determinant, which is a scalar, and (−1)i+ j,
which is a scalar as well.

Theorem 7. If A is a non-singular N × N matrix then

A−1 =
1

det(A)
adj(A)

For instance, for a 2 × 2 matrix we have

B =

a b

c d


Applying the theorem,

B−1 =
1

det(B)

C11 C12

C21 C22

 =
1

ad − bc

 d −b

−c a



11
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Theorem 8 (Cramer’s Rule). Let A be a N × N non-singular matrix s.t. Ax = b. Then

xi =
det(Ãi)

det(A)

for

Ãi =

[
a1 · · · ai−1 b ai+1 · · · aN

]

That is, the matrix obtained by replacing the ith column of A with b.

Definition 19. The trace of an N × N matrix A is the sum of its diagonal elements,

tr(A) =
N

∑
i=1

aii

Some properties of the trace:

• trace(A + B) = trace(A) + trace(B)

• trace(AB) = trace(BA) if both products exist.

• trace(αA) = α trace(A) for anyα ∈ R.

An example which comes up in econometrics is that for any N × K matrix X s.t.
(
XTX

)−1
exists, we have

trace

 X︸︷︷︸
A

B︷ ︸︸ ︷
(XTX)−1XT

 = trace((XTX)−1XTX) = trace(IK×K) = K

Further,
trace

(
IN×N − X(XTX)−1XT

)
= trace

(
IN×N)− trace(X(XTX)−1XT

)
= N − K

1.4. Eigenvalues and Eigenvectors. Take

T(v) =

3 0

0 −1


v1

v2


Note that for the standard basis,3 0

0 −1

 e1 = 3e1

3 0

0 −1

 e2 = −e2

For this particular example, we can see the standard basis is exactly scaled by 3 and −1.

Definition 20. Let A be a N × N square matrix. The N × 1 vector v ̸= 0 is an eigenvector (or characteristic
vector) of A with corresponding eigenvalue or (characteristic root) λ if

Av = λv

12
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v = (v1, v2)

T(v) = (3v1,−v2)

Figure 2: Visualization of a Transformation

In general we want to find a basis {vi} of (the column space of) A s.t.

Avi = λivi

that is, a basis of eigenvectors. Note that

Av = λv ⇐⇒ (A − λI)v = 0

This means that for any v ̸= 0, we have that

p(λ) ≡ det(A − λI) = 0

p(λ) is called the characteristic polynomial of A. (Recall that a matrix has a zero determinant if it is singular;
in this case if(A− λI)v = 0 for any non-zero vector then the columns of A− λI are not linearly independent,
and thus the matrix is singular and has a zero determinant.)

Example 3. Consider

A =

1 2

2 1

 det

1 − λ 2

2 1 − λ

 = 0 ⇐⇒ (1 − λ)2 − 4 = 0 ⇐⇒ (λ+ 1)(λ− 3) = 0

Hence λ = {−1, 3}. These are the eigenvalues. Now we find the eigenvectors. For λ = −1

(A − λI)v = 0 ⇐⇒

2 2

2 2

 v = 0

Which gives that v must be s.t. v1 = −v2. For λ = 3

(A − λI)v = 0 ⇐⇒

−2 2

2 −2

 v = 0

Which gives that v must be s.t. v1 = v2. It is often useful for the norm of the basis to be 1. Hence the

13



Math Camp Aug 23, 2022 – Lecture VI 1. Linear Algebra

eigenvectors are given by

v =
1√
2

 1

−1

 and u =
1√
2

1

1


Note that we can express the above as a system:

AP = PΛ

where

P =

[
v u

]
=


1√
2

1√
2

− 1√
2

1√
2

 Λ =

−1 0

0 3


In this case, note vTu = 0 and vTv = uTu = 1. Hence

PTP =

vT

uT

 [v u

]
=

vTv vTu

uTv uTu

 =

1 0

0 1


and if we pre-multiply the eigen-system by PT we get

PT AP = Λ

Definition 21. A an N × N matrix is diagonalizable if ∃P and diagonal matrix Λ s.t.

P−1 AP = Λ

Note we can equivalently write A = PΛP−1.

It will be useful to note if A is diagonalizable

• Am for any m ∈ N can computed as PΛmP−1.

Am = A × . . . × A = PΛP−1 × . . . × PΛ× . . . ×ΛP−1 = PΛmP−1

since each of the P−1P cancel and Λ×Λ = Λ2 and so on.

• A1/m for any m ∈ N can computed as PΛ1/mP−1.(
PΛ1/mP−1

)m
= PΛ1/mP−1 × . . . × PΛ1/mP−1 = PΛ1/m × . . . ×Λ1/mP−1 = PΛP−1 = A

• If Λ is invertible, then A−m for any m ∈ N can computed as PΛ−mP−1.

A−m = (Am)−1 =
(

PΛmP−1
)−1

= PΛ−mP−1

and we can check

Am A−m = PΛmP−1PΛ−mP−1 = PΛmΛ−mP−1 = PP−1 = I

• Similarly, if Λ is invertible A−1/m for any m ∈ N can computed as PΛ−1/mP−1.

14
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• Let q ∈ Q (so q = m/n for m, n ∈ Z). Then Aq = (Am)1/n is P(Λm)1/nP−1 = PΛqP−1.

• Finally, Ar = PΛrP−1 for any r ≥ 0 (if in addition Λ is invertible, this holds for any r ∈ R).

Claim 2. If A is diagonalizable then P is a matrix of eigenvectors and Λ is a matrix of eigenvalues.

Proof. If A is diagonalizable then
AP = PΛ

Since the kth column of P is s.t. Avk = λkvk we can see vk is an eigenvector and λk an eigenvalue.

Theorem 9. Let A be a N × N matrix with eigenvalues λ1, . . . , λN .

• trace(A) = ∑
N
i=1 λi

• det(A) = ∏
N
i=1 λi.

Proof. Let us show this assuming A is diagonalizable.4

trace(A) = trace(P−1ΛP) = trace(ΛPP−1) = trace(Λ) = ∑
i
λi

det(A) = det(P−1ΛP) = det(P−1) det(Λ) det(P) = det(Λ) = ∏
i
λi

Theorem 10. If A is symmetric then A is diagonalizable and P can be chosen to be orthonormal (P−1 = PT

with each column of P equal to a unit vector). This is known as the spectral decomposition.

Recall in Example 3, the matrix A we considered was symmetric, and we found a diagonalization where
P−1 = PT . This theorem states that we can do this for any symmetric matrix. Below I present an example
for a matrix that is not symmetric.

Remark 3. I am not altogether in the know about linear algebra terminology. I have heard this type of
diagonalization be referred to as eigendecomposition, which is intuitive, and as spectral decomposition, as
it apparently comes from the spectral theorem. However, a spectre sounds too spooky for this class.

Theorem 11. Let A be a symmetric N × N matrix. Then

1. A is PD (ND) ⇐⇒ λi > 0 (< 0) for all eigenvalues λi of A.

4For the general proof, recall λ1 , . . . , λN are the roots of the polynomial given by

det(A − λI) = (λ1 − λ)× (λ2 − λ)× . . . × (λN − λ)

For the determinant, set λ = 0 and find det(A) = ∏
N
i=1 λi . For the trace, we need to leverage something known as “Vieta’s formulas.”

The relevant result is that for a polynomial of order N, the N − 1 coefficient is the sum of the roots of the polynomial (this sounds
esoteric, but think about how you learned to expand formulas like (λ1 − λ)(λ2 − λ); the “middle” term is −(λ1 + λ2), and this is just
the generalization). If we can show trace(A) is the N − 1 coefficient of the characteristic polynomial we’d be done. To see it, note that
λN−1 will only appear if all the diagonal elements are multiplied (any other permutation will give at most a polynomial of order N − 2).
Hence λN−1 only appears as part of the term

∏
i
(aii − λ)

Here the roots are aii , so the coefficient on λN−1 is ∑i aii = trace(A).

15
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2. A is PSD (NSD) ⇐⇒ λi ≥ 0 (≤ 0) for all eigenvalues λi of A.

Proof. If A is symmetric, then

(2) v′Av = v′PΛPTv = uTΛu

for u = PTv (since P is non-singular, u ̸= 0 if v ̸= 0). Hence the definiteness of A is the same as the
definiteness of Λ. From here we can see that

(3) uTΛu =
N

∑
i=1

λiu2
i

where u2
i ≥ 0 (strict for at least one i). If λi > 0 for all i, v′Av = ∑

N
i=1 λiu2

i > 0, so it is PD. Conversely, if A is
PD, we know v′Av > 0 for any v ̸= 0. In particular, it must be true for v equal to each of the columns of P.
Since the columns of P are orthonormal, for v = pi the ith column of P, PT pi = ei the ith standard vector
(i.e. 1 in the ith entry and 0 elsewhere). Hence v′Av = λi when v = pi; since all such quadratic forms are
positive, λi > 0. The logic for < 0 and ND, ≥ 0 and PSD, and ≤ 0 and NSD is completely analogous.

EigenExample

A =

 1 2

−2 1


We can find that det(A − λI) = 0 gives

(1 − λ)2 + 4 = 0 λ =
2 ±

√
4 − 4 · 5
2

Hence λ = 1 ± 2i. Solving for v, we get

v1 = (α,αi)v2 = (α,−αi)

Letα = 1. Then

P =

1 1

i −i

 P−1 =

−i −1

−i 1


Hence

A =

1 1

i −i


1 + i 0

0 1 − i


−i −1

−i 1



2. Introduction to Ordinary Differential Equations (ODE)

2.1. Dynamic Equations. The basic idea is that we want to understand how a variable changes over time. If
time is continuous (like it is IRL), then we say that

.
y ≡ dy

dt

16
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In general, we have an nth order linear differential equation as

y(n) +αn−1(t)y(n−1) + . . . +α0(t)y = f (t)

whereαi(t) are constants that depend only on t and y(n) is the nth derivative of y with respect to t. We say
it is homogeneous if f (t) = 0.

The equation is called autonomous if t only enters through y(t); that is,αi(t) ≡ αi. For example,
.
y = ky ⇐⇒ .

y − ky = 0

is an autonomous and homogeneous equation. By contrast,
.
y = ty ⇐⇒ .

y − ty = 0

is homogeneous but not autonomous.

Example 4. Consider the autonomous and homogeneous system
.
y = ky

This translates to
dy
dt

= ky

which means that ∫ dy
dt

1
y

dt =
∫

kdt ⇐⇒ log(y) + C1 = kt + C2

Let C3 ≡ exp(C2 − C1), and we have that
y = C3ekt

This equation is not quite defined, since the behavior of y depends on the constant C3. Hence we need
some initial conditions to pin down the path of y with respect to t. For example,

y(0) = 5 5 = C3e0 =⇒ C3 = 5 =⇒ y(t) = 5ekt

Example 5. Consider the homogeneous but not autonomous system
.
y = ty

Again,
dy
dt

= ty

which means that ∫ dy
dt

1
y

dt =
∫

tdt ⇐⇒ log(y) + C1 =
t2

2
+ C2

Let C3 ≡ exp(C2 − C1), and we have that

y = C3e
t2

2

17
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Note that y(0) = C3. Hence we can write

y(t) = y(0)e
t2

2

We will not always use the separation of variables method. In general, if we have an equation of the form
.
y + p(t)y = q(t)

that will be neither autonomous nor homogeneous. One method to solve this system is to use the integrating
factor. Multiply each term by exp(

∫
p(t)dt):

exp
{∫

p(t)dt
}( .

y + p(t)y
)
= exp

{∫
p(t)dt

}
q(t)

Why? Because we have that

d
dt

(
exp

{∫
p(t)dt

}
y
)
= exp

{∫
p(t)dt

}
.
y + exp

{∫
p(t)dt

}
p(t)y

Hence ∫ [ d
dt

(
exp

{∫
p(t)dt

}
y
)]

dt =
∫ [

exp
{∫

p(t)dt
}

q(t)
]

dt

gives

y(t) =
∫
[exp {

∫
p(t)dt} q(t)] dt + C

exp {
∫

p(t)dt}

for some constant C. Let’s see an example:

Example 6. Consider the system .
y = ay + b

The issue is that this is not homogeneous. How to proceed in this case? p(t) = −a and q(t) = b; the
integrating factor is

exp
{∫

p(t)dt
}

= exp
{∫

−adt
}

= exp {−at}

Plugging the formula,

y(t) =
∫

exp {−at} bdt + C
exp {−at} = − b

a
+ C exp {at}

2.2. Dynamic Systems. Consider an equation in discrete time

yt = αyt−1 + xt

An nth order linear difference equation is

yt−n +α(n−1)(t)yt−(n−1) + . . . +α0(t)yt = f (t)

18
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We say that this is homogeneous if f (t) = 0 and autonomous ifαi(t) ≡ αi do not depend on t. The way to
solve this is by recursive computation:

yt =
1
k

yt−1

In general,

yt =
1
k2 yt−2 =

1
k3 yt−3 = . . . =

1
kt y0

For example take the 2nd order homogeneous and autonomous difference equation

yt−2 +αyt−1 +βyt = 0

We assume that yt = Cat, and we check against that. So

Cat−2 +αCat−1 +βCat = 0 ⇐⇒ a−2 +αa−1 +β = 0 ⇐⇒ βa2 +αa + 1 = 0

Hence

a =
−α ±

√
α2 − 4β

2β

Considera first-order dynamic system:
xt = Axt−1

If A is diagonalizable, then

xt = P−1ΛP
(

P−1ΛPxt−2

)
= P−1Λ2Pxt−2 = . . . = P−1ΛtPx0

Hence the dynamics of the system can be determined by analyzing the matrix of eigenvectors Λ.

• If all eigenvalues have absolute value < 1 then the system is globally stable (Λt → 0).

• If all eigenvalues have absolute value > 1 then the system is globally unstable (Λt → ±∞)..

In continuous time, consider .
x = Ax

Again, assuming A id diagonalizable,
P

.
x = ΛPx

Let y = Px, so
.
y = P

.
x, and we have .

y = Λy

with Λ diagonal. In this case, the solution is given by

y = exp(Λt)C

for some constant vector C and exp(Λt) denoting the diagonal matrix diag {λ1t, . . . , λNt}. Note
.
y = Λ exp(Λt)C︸ ︷︷ ︸

y

= Λy
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