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1. Differentiation

Definition 1. Let I ∈ R be an open interval; a function f : I → R is differentiable at a ∈ I if

lim
x→a

f (x)− f (a)
x − a

= L

for some L (that is, the limit exists). We write f ′(a) = L or
df
dx

(a) = L. If f is differentiable ∀a ∈ I then we

say f is differentiable in I.

Intuitively, differentiation yields the slope of a function at a point:
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f ′(a)

x a x

Figure 1: Graphical representation of a derivative

Theorem 1. If f : I → R is differentiable at a ∈ I then f is also continuous at a.

Proof. We want to show that ∀ε > 0 ∃δ > 0 s.t.

|x − a| < δ =⇒ | f (x)− f (a)| < ε

Since f is differentiable, we know that for any such ε, we can find some δ̃ > 0 s.t.

| f (x)− f (a)|
δ̃

<
| f (x)− f (a)|

|x − a| =

∣∣∣∣ f (x)− f (a)
x − a

− L + L
∣∣∣∣ ≤ ∣∣∣∣ f (x)− f (a)

x − a
− L

∣∣∣∣+ |L| < ε+ |L|

for some L. That is, we know the derivative exists and it is equal to some L, so by the definition of a limit,
we can find δ̃ > 0 s.t.

|x − a| < δ̃ =⇒
∣∣∣∣ f (x)− f (a)

x − a
− L

∣∣∣∣ < ε

Hence whenever |x − a| < δ̃ we get

| f (x)− f (a)| < (ε+ |L|) δ̃

If we can find δ ≤ δ̃ s.t. (ε+ |L|) δ < ε then we’d be done. Take any δ < min
(
δ̃,

ε

ε+ |L|

)
and we have

|x − a| < δ < δ̃ =⇒ | f (x)− f (a)| < δ(ε+ |L|) < (ε+ |L|) ε

ε+ |L| = ε

Theorem 2. Let f : I → R and g : I → R be differentiable.

• d
dx

[c f (x)] = c f ′(x).

• d
dx

[ f (x) + g(x)] = f ′(x) + g′(x).
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• Product rule:
d

dx
f (x)g(x) = f ′(x)g(x) + f (x)g′(x).

• Power rule:
d

dx
xk = kxk−1.

• Chain rule: ( f ◦ g)(x) = f (g(x)) = f ′(g(x))g′(x).

• Quotient rule:
f (x)
g(x)

=
f ′(x)g(x)− f (x)g′(x)

g(x)2 .

Some useful special results:

d
dx

ex = ex

d
dx

log(x) =
1
x

d
dx

sin(x) = cos(x)

d
dx

cos(x) = − sin(x)

Definition 2. A function f : I → R is continuously differentiable if f ′ is continuous.

Example 1. f (x) = x2 is continuously differentiable since f ′(x) = 2x is continuous. However,

f (x) =

{
x2 sin(1/x) x ̸= 0

0 x = 0

is not continuously differentiable. In particular, for x ̸= 0,

f ′(x) = 2x cos(1/x)− x2 1
x2 cos(1/x) = 2x cos(1/x)− cos(1/x)

and for x = 0 the derivative is 0:

lim
x→0

f (x)− f (0)
x − 0

= lim
x→0

x2 sin(1/x)
x

= lim
x→0

x sin(1/x)

With sin(1/x) bounded, x → 0 =⇒ x sin(x) → 0. However, the derivative itself is not continuous at 0.

Note that while 2x cos(1/x) x→0−−→ 0, − cos(1/x) does not have a limit, so the derivative does not have a limit
as x → 0 either, meaning it cannot be continuous.

Theorem 3 (L’Hôpital’s rule.). Take f , g : [a, b] → R be continuous functions on [a, b] and differentiable on
(a, b) except for at most some point c ∈ (a, b). Further, let

lim
x→c

f ′(x)
g′(x)

= L

and limx→c g(x) = limx→c f (x) = 0. Then

lim
x→c

f (x)
g(x)

= L

If f , g are differentiable at c then the intuition can be made plain, as this implies f (c) = g(c) = 0, and

lim
x→c

f (x)
g(x)

= lim
x→c

f (x)− 0
g(x)− 0

· x − c
x − c

= lim
x→c

( f (x)− f (c))/(x − c)
(g(x)− g(c))/(x − c)

=
f ′(c)
g′(c)
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Theorem 4 (Taylor’s theorem). Let n ∈ N and f : [a, b] → R be continuously differentiable n times on (a, b).
Then for all x̃, x ∈ (a, b) there is some function h s.t. limx→x̃ h(x) = 0 and

f (x) =
n

∑
k=0

f (k)(x̃)
k!

(x − x̃)k + h(x)(x − x̃)n

The first term is called the nth order Taylor approximation of f around x̃ and the second term is called
the error or remainder term of the Taylor expansion. If we further have that f is n + 1 times continuously
differentiable then ∃c ∈ (x̃, x) (or c ∈ (x, x̃)) s.t.

f (x) =
n

∑
k=0

f (k)(x̃)
k!

(x − x̃)k +
f (n+1)(c)
(n + 1)!

(x − x̃)n+1

Example 2. • The Taylor expansion of any polynomial is the polynomial itself. Consider f (x) = x2 + 3x

f (x) =
f (1)
0!

(x − 1)0 +
f ′(1)

1!
(x − 1)1 +

f ′′(c)
2!

(x − 1)2

= 4 + 5(x − 1) +
2
2
(x − 1)2

= 4 + 5x − 5 + x2 − 2x + 1 = x2 + 3x

However, for lower-order Taylor expansions the theorem still applies. Visually:

Figure 2: Visualizing Taylor’s Theorem

x = 0.5

c = 0.75 ∈ (0.5, 1)

x

f (x) = x2 + 3x

Given x = 5 Recover Exact Value

x = 1

5x − 1

x

f (x) = x2 + 3x

Approximate the function around x = 1

The left and right figures correspond to:

f (x) =
f (1)
0!

(x − 1)0 +
f ′(c)

1!
(x − 1)1

= 4 + (2c + 3)(x − 1)

f (x) ≈ f (1)
0!

(x − 1)0 +
f ′(1)

1!
(x − 1)1

= 4 + 5(x − 1)

We can see on the left that there is indeed some number c s.t. Taylor’s theorem holds. For our sample
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value of x = 0.5 we find c = 0.75 ∈ (0.5, 1). On the right figure, on the other hand, we plot the
approximation. In this case, the function and the approximation are exactly equal at 1, since the
approximation at that point simplifies to f (1). We can also see that around x = 1 the approximation is
fairly good! However, farther away the error increases, as we would expect.

• One common Taylor approximation is for the logarithm. In particular, the first order Taylor expansion
around 1:

log(x) ≈ log(1) +
1
1
(x − 1) = x − 1

Another version of this approximation is for log(1 + x) around 0:

log(1 + x) ≈ log(1) +
1

1 + 0
(x − 0) = x

Take the relation:

log Y = α log K + (1 −α) log L

Using the approximation above, we can say that if K increases by 10%, then Y increases byα log(1.1) ≈
α · 0.1, that is, 10α%.

This second approximation is often used when dealing with percentage changes. You will hear the term
log-linearization thrown around, and this is what that’s in reference to: Logarithms can be approximated as
a percentage for small values.

1.1. Partial Derivatives.

Definition 3. Let f : S ⊆ RN → RM, e = (e1, . . . , eN) a standard basis of RN , u = (u1, . . . , uM) a standard
basis for RM. ∀x ∈ S, f (x) ∈ RM, f (x) is a linear combination of u and some set of functions { f1, . . . , fM}
s.t. fi : S → R with

f (x) =
M

∑
i=1

fi(x)ui

Definition 4. The partial derivative of a function f : S ⊆ RN → RM at x ∈ S is

∂

∂x j
fi(x) = lim

t→0

fi(x + t · e j)− fi(x)
t

for i = 1, . . . , M and j = 1, . . . , N.

Note that partial derivatives needn’t imply anything about the behavior of the function overall. Take, for
instance, f : R2 → R with

f (x, y) =


x2 y4

x4 + y8 (x, y) ̸= (0, 0)

0 (x, y) = (0, 0)

The partial derivatives at 0 are all 0 (crucially, we take the limits one dimension at a time, so it’s not that
(x, y) → (0, 0), but rather x → 0 and y → 0 separately. Now take any ym → 0 and xm = y2

m s.t. ym ̸= 0 for
all n.

lim
n→∞ f (xm, ym) =

1
2
̸= 0 = f (0, 0)

which means the function is not even continuous at 0.
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Theorem 5 (Schwarz’s Theorem). Let f : S ⊆ RN → R; then

∂

∂xi

∂

∂x j
f (x) =

∂

∂x j

∂

∂xi
f (x)

if all the partial derivatives exist and are continuous; that is, mixed partials are symmetric.

Definition 5. The gradient of f : S ⊆ RN → R at x ∈ S is

(∇ f )(x) =


∂

∂x1
f (x)
...

∂

∂xN
f (x)


The gradient can also be denoted as (D f )(x) or Dx f (x).

Definition 6. The Hessian of f : S ⊆ RN → R at x ∈ S is

(D2 f )(x) =



∂2

∂x2
1

f (x) · · · ∂2

∂xN∂x1
f (x)

...
. . .

...

∂2

∂x1∂xN
f (x) · · · ∂2

∂x2
N

f (x)


Where D2 denotes the application of the D operator twice. The Hessian can also be denoted Dx′Dx f (x)
(this is analogous to the d/dx2 operator for univatiate functions, where you can think x2 for a vector is x′x).

NB: I am using x′ to denote the transpose; alternatively this can be denoted xT .

Definition 7. Let f : S ⊆ RN → RM and x ∈ S; the Jacobian of f is the M × N matrix with i, j entry equal to
∂

∂x j
fi(x), denoted Dx′ f (x).

1.2. Mean Value Theorem (MVT).

Theorem 6 (Mean Value Theorem (MVT)). Let f : [a, b] → R be a continuous function on the closed interval
[a, b] and differentiable on the open interval (a, b). Then ∃c ∈ (a, b) s.t.

f ′(c) =
f (b)− f (a)

b − a

We will prove an equivalent, albeit perhaps conceptually easier, version of this:

Theorem 7 (Rolle’s Theorem). Let g : [a, b] → R be continuous on [a, b] and differentiable on (a, b) with
g(a) = g(b). Then ∃c ∈ (a, b) s.t.

g′(c) = 0

Claim 1. Rolle’s Theorem iff Mean Value Theorem (MVT).

Proof. The mean value theorem implies Rolle’s theorem by definition. Simply note that by the MVT there is
some c s.t.

f ′(c) =
g(b)− g(a)

b − a
= 0
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f (a)

f (b)

f (c)

f ′(c)

Mean Value Theorem

f (a) f (b)

f (c) f ′(c)

Rolle’s Theorem

Figure 3: Graphical depiction of MVT

Now to show Rolle’s theorem implies MVT, we only need a simple transformation:

g(x) = ( f (x)− f (a))− f (b)− f (a)
b − a

(x − a)

(This is subtracting the line with slope
f (b)− f (a)

b − a
that goes through a from the function f , which is what

we need to get it to “flatten.”) Note that g(a) = g(b) = f (b)− f (a). Hence ∃c s.t.

g′(c) = 0

But we can see that

g′(c) = f ′(c)− f (b)− f (a)
b − a

= 0 =⇒ f ′(c) =
f (b)− f (a)

b − a

Now we show Rolle’s Theorem.

Proof. For Rolle’s theorem we will use the extreme value theorem, and we know that f is bounded and
attains its sup and its inf in [a, b]. If the sup and the inf are both at {a, b}, then because by assumption
f (a) = f (b), f (x) = 0 everywhere on [a, b]. Take any c ∈ (a, b), and

f ′(c) = lim
y→c

f (y)− f (c)
y − c

= lim
y→c

0
y − c

= lim
y→c

0 = 0

Suppose then that either the sup or the inf occur at at interior point c ∈ (a, b). Take the sup (WLOG; the inf
is analogous or you can set g = − f ). By assumption f is differentiable, so f ′(c) exists. That is, we know that

f ′(c) = lim
y→c

f (y)− f (c)
y − c

= L

Consider y → c−, that is y approaching c from the left. Since the sup is attained at c, f (c) ≥ f (y) for all
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c > y, which in turn gives
f (y)− f (c)

y − c
≥ 0 ∀c > y

Now take y → c+, that is y approaching c from the right. Again, since the sup is attained at c, f (c) ≥ f (y)
for all c < y, which in turn gives

f (y)− f (c)
y − c

≤ 0 ∀c < y

Which means that

L− = lim
y→c−

f (y)− f (c)
y − c

≥ 0 and L+ = lim
y→c+

f (y)− f (c)
y − c

≤ 0

Since the limit exists ( f is differentiable at c), we know L = L− = L+. Thus 0 ≤ L ≤ 0 =⇒ L = 0.

Corollary 1. If f is continuous on [a, b] and differentiable on (a, b) and obtains a local minimum or maximum
at c, then f ′(c) = 0.

Corollary 2. If f is continuous on [a, b] and differentiable on (a, b) and f ′(x) > 0 for every x ∈ (a, b) then f
is increasing on (a, b). Conversely, if f ′(x) < 0 for every x ∈ (a, b) then f is decreasing on (a, b).

Theorem 8 (Generalized MVT). Let f , g : [a, b] → R be continuous functions on [a, b] and differentiable on
(a, b). Then ∃c ∈ (a, b) s.t.

g′(c) ( f (b)− f (a)) = f ′(c) (g(b)− g(a))

The MVT is a case where g(x) = x, the identity function.

2. Implicit Function Theorem (IFT)

2.1. Motivation. Consider a function f (x, y) = 0. How do we characterize a function relating x to y? We
can write that for f : R2 → R continuously differentiable on an open set O with f (x, y) = 0, there exists
some function h s.t.

f (x, h(x)) = 0 and
dy
dx

= − ∂ f /∂x
∂ f /∂y

One classic example is how to characterize the slope of a tangent line at a point (x, y) of some circle of
radius r centered at (0, 0). That is, x2 + y2 = r2. We can write

f (x, y) = x2 + y2 − r2 = 0

So we know that for some h(x), f (x, h(x)) = 0. Furthermore,

∂ f
∂x

= 2x
∂ f
∂y

= 2y =⇒ dy
dx

= − x
y

We will look at the general version of the theorem. We often work with a parameter space and a variable
space, and we want to express the variables in terms of the parameters (or with exogenous and endogenous
variables, and we want to express the endogenous variables in terms of the exogenous variables). Take

(θ1, . . . ,θN) = θ ∈ RN

8



Math Camp Aug 17, 2023 – Lecture IV 2. Implicit Function Theorem (IFT)

to be the parameters (or exogenous) and

(x1, . . . , xM) = x ∈ RM

to be the variables (or endogenous). It’s typically not common to have an explicit expression for the latter in
terms of the former, but often we will encounter an implicit relation of the form

f (θ, x) = 0

For example, some system of equations

f1(θ, x) = 0
...

fM(θ, x) = 0

The IFT gives a result we can apply to these types of problems.

2.2. The IFT.

Theorem 9 (Implicit Function Theorem (IFT)). Take a function f : RN ×RM → RM that is continuously
differentiable and fix a point (θ̃, x̃) ∈ RN ×RM s.t. f (θ̃, x̃) = 0. If Dx′ f (θ̃, x̃) is non-sigular (i.e. full-rank,
or has a non-0 determinant) then for some open sets A, B s.t. θ̃ ∈ A, x̃ ∈ B, there exist a unique function
h : A → B that is continuously differentiable in A s.t.

f (θ, h(θ)) = 0

for all θ ∈ A, and h(θ̃) = x̃. Taking derivatives with respect to θ′, we further have

Dθ′ f (θ, h(θ)) + Dx′ f (θ, h(θ))Dθ′h(θ) = 0

Dθ′h(θ) = − [Dx′ f (θ, h(θ))]−1 Dθ′ f (θ, h(θ))

2.3. Example. Take a simplified version of the IS-LM model

Y = C + I + G

C = C(Y − T)

I = I(r)

MS = MD(Y, r)

with

0 < C′(x) < 1 I′(r) < 0
∂MD

∂Y
> 0

∂MD

∂r
< 0

National income must equal consumption plus investment (savings) plus government spending; consump-
tion is some function of income minus taxes, the level of investment is determined by the interest rate, and
money supply must equal money demand. We have that

Y − C(Y − T)− I(r)− G = 0

MS − MD(Y, r) = 0

which is the exact type of problem the IFT can help us solve. We have endogenous variables x = (Y, r),
national income and the interest rate, and exogenous variables θ = (MS, G, T), money supply, government

9
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spending, and taxes. Hence

(1) f (θ, x) =

 f1(θ, x)

f2(θ, x)

 =

Y − C(Y − T)− I(r)− G

MS − MD(Y, r)

 = 0

Hence for some h, we can write

h(θ) =

Y(MS, G, T)

r(MS, G, T)


Dθ′ f (θ, h(θ)) + Dx′ f (θ, h(θ))Dθ′h(θ) = 0

(NB: Stop here in class; the rest is a homework problem.) We have that

Dθ′ f (θ, h(θ)) =

0 −1 C′(Y(·)− T)

1 0 0



Dx′ f (θ, h(θ)) =


∂ f1

∂Y
= 1 − C′(Y(·)− T)

∂ f1

∂r
= −I′(r(·))

∂ f2

∂Y
= −∂MD

∂Y
∂ f2

∂r
= −∂MD

∂r



[Dx′ f (θ, h(θ))]−1 =
1
D

−
∂MD

∂r
I′(r(·))

∂MD

∂Y
1 − C′(Y(·)− T)



D = −

<0︷ ︸︸ ︷
∂MD

∂r

(
1 − C′(Y(·)− T)

)
︸ ︷︷ ︸

>0︸ ︷︷ ︸
>0

−
<0︷ ︸︸ ︷

I′(r(·)) ∂MD

∂Y︸ ︷︷ ︸
>0︸ ︷︷ ︸

>0

=⇒ D > 0

A non-zero determinant implies that the inverse exists. Hence we find that

Dθ′h(θ) =


∂Y

∂MS
∂Y
∂G

∂Y
∂T

∂r
∂MS

∂r
∂G

∂r
∂T

 = − 1
D


I′(r(·)) ∂MD

∂r
−∂MD

∂r
C′(Y(·)− T)

1 − C′(Y(·)− T) −∂MD

∂Y
∂MD

∂Y
C′(Y(·)− T)



= − 1
D

< 0 < 0 > 0

> 0 < 0 > 0

 =
1
D

> 0 > 0 < 0

< 0 > 0 < 0


Which means that for some x = (Y, r),θ = (MS, G, T) that satisfies Equation (1) there is some local
neighborhood around θ where we can characterize the behavior of (Y, r) with respect to each of the
variables in θ. In particular, income reacts positively to increases money supply or government spending
but negatively to taxes, while the interest rate goes down with increases in the money supply or taxes but
goes up with increases in government spending.
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3. Unconstrained Optimization

Definition 8. Let f : A → B

1. x ∈ A is a local maximum of f if ∃ε > 0 s.t.

y ∈ Bε(x) ∩ A =⇒ f (x) ≥ f (y)

The local maximum is strict if the inequality is strict. (Note the intersection: For example, f (x) = x has
no local maximum on R, but every point is a local maximum if we define the function over x ∈ N.)

2. The local minimum definition is analogous.

3. x ∈ A is a global maximum of f if ∀y ∈ A, f (x) ≥ f (y). It is a strict global maximum if whenever x ̸= y
we have f (x) > f (y).

4. The global minimum definition is analogous.

local min

global max

global min

local max

local min and max

Figure 4: Examples of local and global maxima and minima

Definition 9. The argmax of a function f is the set

argmax
x∈A

f (x) = {x ∈ A : f (x) ≥ f (y) ∀y ∈ A}

The argmin is analogously defined.

3.1. Linear Algebra Review.

Definition 10. A square N × N matrix S with elements in R is positive semidefinite (PSD) if ∀p ∈ RN

pT Sp ≥ 0

and positive definite (PD) if the inequality is strict whenever p ̸= 0.

Definition 11. A square N × N matrix S with elements in R is negative semidefinite (NSD) if ∀p ∈ RN

pT Sp ≤ 0

and negative definite (ND) if the inequality is strict p ̸= 0.

11
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Definition 12. Let S be a N × N matrix with elements in R. If ∃p1, p2 ∈ RN s.t.

pT
1 Sp1 > 0 and pT

2 Sp2 < 0

then we say S is indefinite.

Example 3. Consider the matrix

S =


1 2 3

4 5 6

7 8 9


and take p1 = (1, 0, 0), p2 = (−2, 1, 0). Then

pT
1 Sp1 =

[
1 0 0

] 
1 2 3

4 5 6

7 8 9




1

0

0

 = 1 > 0

pT
2 Sp2 =

[
−2 1 0

] 
1 2 3

4 5 6

7 8 9



−2

1

0

 = −3 < 0

So S is indefinite. In general we only need one counterexample for indefiniteness, but we need to check
that every vector p gives a positive or negative quadratic form for definiteness. It turns out for symmetric
matrices there are rules definite matrices have to follow that will help us determine their definiteness.

Definition 13. Let S be a N × N matrix with elements in R. A kth order principal submatrix is the submatrix
of S obtained by removing N − k rows and the corresponding columns of S. A kth order principal minor is
the determinant of a kth order principal submatrix.

It’s easiest to talk about the principal minors using examples: Take

S =


1 2 3

4 5 6

7 8 9


The 1st order principal submatrices are

[1] [5] [9]

and the principal minors are the determinants therein. The 2nd order principal submatrices are1 2

4 5


1 3

7 9


5 6

8 9


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and the 2nd order principal minors are their determinants:

det

1 2

4 5

 = −3 det

1 3

7 9

 = −12 det

5 6

8 9

 = −3

Finally, the 3rd order principal submatrix is just the matrix S itself, and the 3rd order principal minor is the
determinant of S (in this case, 0).

Definition 14. Let S be a N × N matrix with elements in R. The kth leading principal minor is the principal
minors obtained by removing the “last” N − k columns and rows of S.

In our example above, these are the determinants of the matrix S itself (3rd leading principal minor), and

1st → det[1] = 1 2nd → det

1 2

4 5

 = −3 3rd → det


1 2 3

4 5 6

7 8 9

 = 0

Definition 15. A matrix S is symmetric if S = ST ; that is, so S with entries s(i, j) we have

s(i, j) = s( j, i)

Theorem 10. Let S be a N × N symmetric matrix.

1. If all the leading principal minors are strictly positive, then S is positive definite.

2. If for every k ≤ N the kth order leading principal minor has sign (−1)k (that is, positive for k even and
negative for k odd), then S is negative definite.

3. If all principal minors of S are weakly positive (≥ 0) then S is positive semidefinite.

4. If for every k ≤ N the kth order principal minors are ≤ 0 when k is odd and ≥ 0 when k is even, then S
is negative semidefinite.

5. If the principal minors do not fit any of the above patterns then S is indefinite.

Example 4. Consider the matrices

A =


1 0 0

0 1 0

0 0 1

 B =


−1 0 0

0 −1 0

0 0 −1

 C =


0 0 0

0 1 0

0 0 −1


A, the identity, is positive definite. Consider any non-zero p:

pT Ap = pT p = ∑
i

p2
i > 0

if pi ̸= 0 for some i. Note all the leading principal minors are 1. For B, we similarly have

pTBp = −pT p = −∑
i

p2
i < 0

13
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if pi ̸= 0 for some i. Note the leading principal minors are−1, 1,−1. For C, take p1 = (0, 1, 0), p2 = (0, 0,−1):

pT
1 Cp1 = 1 > 0 pT

2 Cp2 = −1 < 0

so C is indefinite. Note the leading principal minors are all 0, but the non-leading principal minors do not
obey the pattern that gives semi-definiteness. In this case, the 1st-order principal minors are 0 (leading), 1,
and −1, which is already an issue since the sign flips within a given set of principal minors.

3.2. First Order Conditions (FOC).

Theorem 11. Let f : A → R be a continuously differentiable function on an open set A ⊆ RN . If x∗ ∈ A is a
local minimum or maximum, then

D f (x∗) = 0

that is, the first-order partials evaluated at x∗ equal 0.

Remark 1. In general the converse need not be true. For instance f (x) = x3. We have f ′(x) = 3x2 = 0
if x = 0. However the function does not have a local minimum or maximum at 0. Hence D f (x) = 0 is a
necessary but not sufficient condition.

Some examples

1. Take f (x) = 2x3 − 3x2. We have
D f (x) = 6x2 − 6x

D f (x) = 0 at x = 0, 1, so if f has local maxima or minima they must occur at those points, but we don’t
yet know how to check whether they are local maxima or minima.

2. f (x, y) = x3 − y3 + 9xy, so f : R2 → R. We have

D f (x, y) =

 3x2 + 9y

−3y2 + 9x


D f (x, y) = 0 at (0, 0) and (3,−3). Note

0 = 3x2 + 9y

0 = −3y2 + 9x

3y2 = 9x

x2 = −3y

x4 = 9y2 = 3(3y2) = 3(9x)

So

x4 = 27x =⇒ x = 3

27 + 9y = 0 =⇒ y = −3

3.3. Second Order Conditions (SOC).
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Theorem 12. Let f : A → R be a twice continuously differentiable function on an open set A ⊆ RN with

D f (x∗) = 0

for some x∗ ∈ A. If D2 f (x∗) the Hessian at x∗ is negative definite then x∗ is a local maximum, and if it is
positive definite then it is a local minimum.

Remark 2. The converse need not hold. For instance, take f (x) = x4, D f (x) = 4x3, D2 f (x) = 12x2. At
x∗ = 0, we have D f (0) = 0, but D2 f (0) = 0 is neither positive nor negative definite. Hence a strictly
definite Hessian is a sufficient condition for a local maximum or minimum, but it is not necessary.

Theorem 13. Let f : A → R be a twice continuously differentiable function on an open set A ⊆ RN . If
x∗ ∈ A is a local maximum, then

D f (x∗) = 0

and D2 f (x∗) is negative semidefinite. If x∗ ∈ A is a local minimum, then D f (x∗) = 0 and D2 f (x∗) is
positive semidefinite.

Remark 3. Again, the converse need not be true. In our previous example, x∗ = 0 is actually a local minimum,
and we can check that D f (x∗) = 4(03) = 0 and D2 f (x∗) = 12(02) = 0 ≥ 0 (positive semidefinite). However,
D2 f (x∗) ≤ 0 means that it is negative semidefinite as well, but that does not imply a local maximum. Hence
the condition is necessary but not sufficient.

Let us take f (x) = 2x3 − 3x2 again. We saw that D f (x) = 6x2 − 6x = 0 at x = 0, 1. Now we have

D2 f (x) = 12x − 6

D2 f (0) = −6 < 0 =⇒ local max

D2 f (1) = 6 > 0 =⇒ local min

What about f (x, y) = x3 − y3 + 9xy? Recall

D f (x, y) =

 3x2 + 9y

−3y2 + 9x

 = 0 ⇐= (x, y) = (0, 0) or (3,−3)

We find that

D2 f (x, y) =

6x 9

9 −6y


The second order principal minor is the determinant of the Hessian itself. The 1st order principal minor is
6x. Note the determinant of the Hessian is∣∣D2 f (x, y)

∣∣ = −36xy − 81

1. For (0, 0), we have 6(0) = 0 and −36(0)(0)− 81 = −81 < 0. The 2nd leading principal minor is negative,
so the Hessian at that point cannot be positive definite. Further, (−1)2 is positive, so it cannot be negative
definite either. Hence the Hessian at (0, 0) is indefinite.
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2. For (3,−3), we have 6(3) = 18 > 0 and −36(3)(−3) − 81 = 324 − 81 = 243 > 0. The 1st and 2nd
leading principal minors are both positive, which means the Hessian at that point is positive definite
and (3,−3) is a local minimum.

NB: This is exactly the second-derivative test you may have learned in early calculus. For a function
f : R2 → R, the Hessian is given by

D2 f (x, y) =

 fxx fxy

fxy fyy


with fxy denoting the partials with respect to x and then y.

1. The second-oder leading principal minor has to be positive for the Hessian to be definite, positive or
negative. This is the determinant of the Hessian itself, or fxx fyy − 2 fxy > 0.

2. The first-oder leading principal minor has to be positive for a min, or fxx > 0, which gives PD.

3. The first-oder leading principal minor has to be negative for a max, or fxx < 0, which gives ND.

Remark 4. One way to think about why it is that definiteness of the Hessian gives local extrema is to use a
“multivariate” version of Taylor’s theorem. Let f : A → R be a twice continuously differentiable function on
an open set with D f (x∗) = 0 for some x∗. Note any x can be written as x∗ +αz for some unit vector z and
someα. Note all such x are at mostα away from x∗ (i.e. x ∈ Bα(x∗)). Let g(α) = f (x∗ +αz) and consider
the second-order Taylor expansion of g aroundα = 0:

g(α) = g(0) + g′(0)α +
1
2

g′′(0)α2 + h(α)α2

f (x∗ +αz) = f (x∗) +αzTD f (x∗) +
α2

2
zTD2 f (x∗)z + h(α)α2

with h(α) → 0 asα → 0. We know D f (x∗) = 0 by premise. If D2 f (x∗) is positive definite, it turns out there
exists some λ s.t. zTD2 f (x∗)z ≥ λzTz = λ > 0 for any unit vector z.1 Hence

f (x∗ +αz) = f (x∗) +
α2

2
zTD2 f (x∗)z + h(α)α2 > f (x∗) +

(
λ

2
+ h(α)

)
α2

for any z s.t. x∗ +αz ∈ Bδ(x∗). Since h(α) → 0, there should be anα small enough to make the last term
above positive; thus for someα > 0 we have

f (x∗ +αz) > f (x∗)

for any such z; the last step is to remark once again x = x∗ +αz ∈ Bα(x∗). Hence if D2 f (x∗) is PD we have
a local min for theα-neighborhood. The steps for a local max are analogous (note λ will be negative).

3.4. Concavity and Convexity.

1We will discuss this in the last lecture, but a symmetric matrix is PD iff all its eigenvalues are strictly positive. Further, a symmetric
matrix S can be decomposed into CΛCT with Λ a diagonal matrix of eigenvalues and C an orthonormal matrix of eigenvectors. Hence
zT Sz = zTCΛCT z = pTΛp = ∑i λi p2

i for p = CT z. Let λ = mini λi and we have the result, since zT Sz ≥ λpT p = zTCCT z = zT z since
C is orthonormal. Last, a symmetric matrix is ND iff all its eigenvalues are strictly negative, and the analogous steps give the result with
the inequality flipped.
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Definition 16. A function f : A → R is concave if for anyα ∈ [0, 1] and x, y ∈ A

α f (x) + (1 −α) f (y) ≤ f (αx + (1 −α)y)

It is strictly concave if the above holds strictly forα ∈ (0, 1).

Definition 17. A function f : A → R is convex if for anyα ∈ [0, 1] and x, y ∈ A

α f (x) + (1 −α) f (y) ≥ f (αx + (1 −α)y)

It is strictly convex if the above holds strictly forα ∈ (0, 1).

Theorem 14. Let f : A → R be a twice continuously differentiable function on an open set A ⊆ RN .

1. f (x) is concave ⇐⇒ D2 f (x) is negative semidefinite. (Negative definite =⇒ strictly concave.)

2. f (x) is convex ⇐⇒ D2 f (x) is positive semidefinite. (Positive definite =⇒ strictly convex.)

Remark 5. As was pointed out during the lecture, f (x) = x4 is convex but the Hessian is not positive
definite everywhere. In particular, D2 f (0) = 0. Hence while a positive definite Hessian implies concavity,
the converse only gives weak concavity.

Remark 6. The univariate intuition for concave and convex functions generalizes. The first derivative of a
concave function is decreasing (the function is either increasing at a decreasing rate or decreasing at an
increasing rate), so the second derivative must be negative; the converse for a convex function. To see why
this intuition is sufficient for multivariate functions, consider

g(α) = f (αx + (1 −α)y)

and note

g′′(α) = (x − y)TD2 f (αx + (1 −α)y)(x − y)

which is the square form for the Hessian (and exactly the form we want to check for definiteness). We will
show f is concave iff g is concave. If f is concave,

g(αa + (1 − a)β) = f ((αa + (1 − a)β)x + (1 − (αa + (1 − a)β))y)

= f (αax + (1 − a)βx + ay + (1 − a)y −αay − (1 − a)βy)

= f (a(αx + (1 −α)y) + (1 − a)(βx + (1 −β)y))

≥ a f (αx + (1 −α)y) + (1 − a) f (βx + (1 −β)y)

= ag(α) + (1 − a)g(β)

If g is concave,

f (αx + (1 −α)y) = g(α) ≥ αg(1) + (1 −α)g(0) = α f (x) + (1 −α) f (y)

Noting α = 1 ·α + (1 −α) · 0. Hence it is sufficient to show g has a negative second derivative, which
follows from the univariate version of the theorem.

Theorem 15. Let f : A → R be a twice continuously differentiable function on an open set A ⊆ RN .

1. If f is concave and x∗ is s.t. D f (x∗) = 0 then x∗ is a global maximum. (If f is strictly concave the global
maximum is unique.)
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2. If f is convex and x∗ is s.t. D f (x∗) = 0 then x∗ is a global minimum. (If f is strictly convex the global
minimum is unique.)

Some examples:

1. Take the function f (x, y) = x2 + y2. We have

D f (x, y) =

2x

2y

 D2 f (x, y) =

2 0

0 2


Note that D f (0, 0) = (0, 0). Further, the 1st leading principal minor of the Hessian is 2 > 0; for the 2nd
leading principal minor we have 2(2)− 0(0) = 4 > 0. Thus D2 f (x) is positive definite; this means f is
convex and (0, 0) is a global minimum.

2. What about f (x) = x4? In this case

D f (x) = 4x3 D2 f (x, y) = 12x2

D f (0) = 0 and D2 f (0) = 0. However, 12x2 ≥ 0 for all x, so the function is convex, which means that 0
is a global minimum.

3. f (x, y) = x2 y2

D f (x, y) =

2xy2

2x2 y

 D2 f (x, y) =

2y2 4xy

4xy 2x2


Note D f (x, 0) = D f (0, y) = (0, 0), but the kth order principal minors are all 0 at (x, 0) or (0, y). More
genearlly we have that while the 1st principal minors are 2y2 ≥ 0 and 2x2 ≥ 0, the determinant of the
2nd principal minor is

4x2 y2 − 16x2 y2 ≤ 0

Hence we cannot even say whether it is positive or negative semidefinite.
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differentiable, 1

global maximum, 11
global minimum, 11
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