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1. Compactness

So, straight up, the first time I encountered compactness (back in undergrad real analysis) it seemed like an
inscrutable concept. If you get it right away, awesome! But if you don’t, you’re in good company. It can take
a little bit for this to sink in.

1.1. Introduction.

Definition 1. A class F = {Fω}ω∈Ω is said to cover a set S if S ⊆ ∪ω∈ΩFω. If all members of the class F
are open, we say it is an open cover.

Definition 2. A set S is compact if every open cover of S has a finite sub-cover of S.

Some examples of sets that are and are not compact:

• S = (0, 1) is not compact. F = {(1/n, 1) : n ∈ N} covers S. However, there is no finite sub-cover: Any
finite sub-cover gives the interval (1/N, 1); take z = (1/2N) and z ∈ (0, 1) but z /∈ (1/N, 1).

• S = [0, ∞) is not compact. F = {(−1, n) : n ∈ N} covers S. However, there is no finite sub-cover: Any
finite sub-cover gives the interval (−1, N); take z = N + 1 and z ∈ [0, ∞) but z /∈ (−1, N).

• [0, 1] is compact. Compactness is really trying to get to a notion of “finiteness,” and there is a sense in
which intervals that are open or not bounded are not finite. Of course, compactness is more general
than that, but at least in RN we will get a more intuitive definition of compactness.

Remark 1. You can prove the set [0, 1] is compact by following the same steps of the proof for Bolzano-
Weierstrass—the ideas are related. Suppose by contradiction that there is an open cover with no finite
sub-cover. You can split the set in halves so that at least one half has no finite sub-cover; then you can
iterate on this idea and, just like in Bolzano-Weierstrass, the half-intervals will converge to a single point
and give you a contradiction. Can you see what the contradiction will be? If you can then you’ve basically
proven Heine-Borel in R!

Remark 2. Any finite set A is compact. Take any open cover F = {Fω}ω∈Ω. For x ∈ A, x ∈ Fω for some
ω ∈ Ω (there may be several, and a single Fω may contain many x ∈ A). Name this ωx for each x; since A
is finite, {ωx}x∈A is a finite. Hence

FA = {Fωx}x∈A

is a finite sub-cover of A.

Is Q∩ [0, 1] compact (the rational numbers between 0 and 1, inclusive)?

Definition 3. A set S sequentially compact if every sequence in S has a sub-sequence that converges to a
point in S (∀(xm) ∈ S ∃(xmk ) s.t. xmk → x ∈ S).

Theorem 1. A set S is compact ⇐⇒ S is sequentially compact.

1.2. Heine-Borel and Other Theorems.

Theorem 2 (Heine-Borel). For any finite N, S ⊆ RN is compact iff S is closed and bounded.
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A

F = {Bn(0)}n∈N

Infinite Open Cover

A

Finite Open Cover

Figure 1: Examples of Open Covers in R2

Proof. We show that compactness =⇒ closed and bounded. The converse is a bit more involved. Let S
be a compact set; first we show it is bounded. Fix s ∈ S and take

F = {Fn = Bn(s)}n∈N

F is an open cover for RN , and hence an open cover for S ⊆ RN . Since S is compact, it admits a finite
sub-cover.1 Since Fn ⊆ Fn+1, ⋃

n≤N
Fn = FN = BN(s)

Hence x ∈ S =⇒ x ∈ BN(s) for some N > 0, s ∈ S, which is the definition of boundedness. Visually,

S

BN(s)

s

1Strictly speaking, a finite sub-cover is indexed by some finite set T with N = max T and it needn’t be that every n ≤ N is in T;
however, I write n ≤ N for simplicity.
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Now we show that it is closed. Take any x ∈ SC = RN \ S, the complement of S in RN . Define the collection

F =

{
Fn =

(
cl(B 1

n
(x))

)C
}

n∈N

that is, the complement of the collection of closed balls of radius
1
n

around x. A graphical example in R2:

S

x B 1
n
(x)

(
cl(B 1

n
(x))

)C

Note we need the complements of the closed balls because we want the sets in the collection to be open.
Now cl(B 1

n
(x)) → {x}, so ⋃

n∈N

(
cl(B 1

n
(x))

)C
= RN \ {x}

That is, the union of the complements converges to the entire space except for x. Since S ⊆ RN \ {x}
(S ⊆ RN and x ∈ SC =⇒ x /∈ S), then F is an open cover of S. By compactness of S, we know that it admits
a finite sub-cover. Note

B 1
n+1

(x) ⊆ B 1
n
(x) =⇒

(
cl(B 1

n
(x))

)C
⊆
(

cl(B 1
n+1

(x))
)C

Hence any finite union gives ⋃
n≤N

(
B 1

n
(x)
)C

=
(

cl(B 1
N
(x))

)C

Since S ⊆
(

cl(B 1
N
(x))

)C
, it must be that B 1

N
(x) ⊆ SC . Finally, we can say ∀x ∈ SC ∃ε > 0 (any ε < 1/N) s.t.

Bε(x) ⊆ SC

which is the definition of an open set. This shows SC is open, so S is closed. Graphically, we see that at any
point x outside of the set we can construct a ball of radius 1/Nx for some Nx that is entirely outside of S:
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S

x

y

B 1
Nx
(x)

B 1
Ny
(y)

The other direction follows from Theorems 3 and 4 below. If a set S is bounded in RN then it is the subset
of some N-dimensional cube. Once we show the cube is compact, Theorem 4 gives that S is compact (the
closed subset of a compact set is compact). I sketch the proof in the Appendix, but I will omit the details
from the lecture; you will probably see it during your math class this fall and it’s not worth going through it
now unless you’re very curious.

Theorem 3. ∀ −∞ < a < b < ∞, the N-dimensional cube [a, b]N is compact.

Proof. See a sketch in Appendix A.

Theorem 4. Any closed subset of a compact set is compact.

Proof. X be compact and S be a closed subset of X. Let F be any open cover of S and consider

G = F ∪
{
RN \ S

}
Since S is closed, RN \ S is open. Since F is an open cover of S, G is an open cover of S∪ (RN \ S) = RN ⊇ X.
Since X is compact, G has a finite sub-cover {Gn : n ∈ N, n ≤ N} s.t.

S ⊆ X ⊆
N⋃

n=1
Gn

The only set in G that is not in F is RN \ S, but by definition S��⊆RN \ S. Hence S ⊆
(
∪N

n=1Gn
)
\
{
RN \ S

}
,

which means {Gn : n ∈ N, n ≤ N} \
{
RN \ S

}
⊆ F is a finite sub-cover of S.

1.3. Weierstrass Extreme Value Theorem (EVT).

Theorem 5. Let S ⊆ R with S ̸= ∅ a compact set; then S has a minimum and a maximum.

Proof. Since S is compact, it is closed and bounded. Since it is bounded, sup S exists. Suppose sup S /∈ S.
Since S is closed, the complement is open, and we can find some ε > 0 s.t. Bε(sup S) ∩ S = ∅. We know
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that x ∈ S =⇒ x ≤ sup S, but since x /∈ Bε(sup S) = (sup S −ε, sup S +ε) we also have

x < sup S −ε < sup S

so sup S − ε is an upper bound smaller than sup S, contradiction. Thus max S = sup S; the proof for
min S = inf S is analogous.

Theorem 6. Let f : S → T be a continuous function. If S is compact, then f (S) is compact.

Proof. Take any open cover of f (S):

F = {Fω : ω ∈ Ω} with f (S) ⊆
⋃

ω∈Ω
Fω

Consider the inverse-image of each set in the open cover:

f−1(F ) = { f−1(Fω) : ω ∈ Ω}

For each s ∈ S, we know f (s) ∈ f (S), and in turn for each f (s) ∈ S there is some ω s.t. f (s) ∈ Fω, which
implies s ∈ f−1(Fω). In other words f−1(F ) covers S. Since f is continuous, we know the pre-image of
open sets is open, meaning this is an open cover. Since S is compact, it admits a finite sub-cover:

G = { f−1(Fωi ) : i = 1, . . . , N} with S ⊆
N⋃

i=1

f−1(Fωi )

The image of a finite union of sets is just the union of their individual images. Hence

f (S) ⊆ f

(
N⋃

i=1

f−1(Fωi )

)
=

N⋃
i=1

f
(

f−1(Fωi )
)
=

N⋃
i=1

Fωi ∩ f (S) ⊆
N⋃

i=1

Fωi

F was arbitrary and we found a finite sub-cover {Fωi : i = 1, . . . , N}. By definition f (S) is compact. (We
remark that we need to write Fωi ∩ f (S) because the image of the pre-image of an arbitrary set need not
be the set itself! Even if, in this case, we know the pre-image is non-empty, there is no reason why every
element in the set will map to an element in S or even in S. For example, let f (x) = x with S = (0, 3). Note
f ([1, 2]) = [1, 2] ⊆ (0, 4), but f ( f−1((0, 4))) = f ((0, 3)) = (0, 3) ̸= (0, 4).)

Theorem 7 (Weierstrass’ EVT). If S is a compact setϕ : S → R is continuous then ∃x, y s.t. ϕ(x) = supϕ(S)
andϕ(y) = infϕ(S).

Proof. The EVT follows directly from other theorems in this section. Since S is compact andϕ continuous,
ϕ(S) is compact. Sinceϕ(S) ⊆ R is compact, it has a minimum and a maximum.

Application to Economics Consider a standard utility maximization problem

max
x∈B(p,w)

u(x)

with B(p, w) = {x : p · x ≤ w} and x, p ∈ RN
+ . B(p, w) is closed and bounded, so if u(x) is continuous the

maximum exist and the problem has a solution at some x∗ ∈ B(p, w).
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1.4. Using Sequential Definitions. The idea here is to show examples of how to construct sequences in a
way that helps when doing proofs. We saw these proofs already without using sequences; however, we we
have seen that various definitions often have a sequential version, so let us see how they might help.

1. Let us show if X ⊆ S is closed and S compact then X compact.

Proof. • Take any sequence (xm) ∈ X ⊆ S.

• S is compact, so it is sequentially compact; that is, ∃xmk → x for some x ∈ S.

• X is closed, so x ∈ X. Hence any sequence in X has a convergent subsequence in X.

By definition, X is sequentially compact, which means it is compact.

2. Let us show if f : S → T is continuous function, then S is compact implies f (S) compact.

Proof. • Take any sequence ym ∈ f (S); we know ∀m ∃xm ∈ S s.t. f (xm) = ym.

• S is compact, so it is sequentially compact; that is, ∃xmk → x for some x ∈ S.

• f is continuous, so ymk = f (xmk ) → f (x) ∈ f (S). Let y ≡ f (x).

• Hence ∀ym ∈ f (S) ∃ymk → y for some y ∈ S.

By definition, f (S) is sequentially compact, which means it is compact.

3. Let us show Weierstrass’ EVT:

Proof. • Since S is compact andϕ is continuous,ϕ(S) is compact.

• ϕ(S) is compact, so it is closed and bounded.

• ϕ(S) bounded means −∞ < infϕ(S) ≤ supϕ(S) < ∞.

• By definition of supϕ(S), ∀εm = 1/m ∃zm ∈ ϕ(S) s.t. supϕ(S)− ε < zm ≤ supϕ(S) (if not, then
supϕ(S)−ε would be the sup, contradiction). Note zm → supϕ(S).

• ϕ(S) closed means it has all its limits, so supϕ(S) ∈ϕ(S). Hence ∃x ∈ S s.t. x = supϕ(S).

• For the inf, construct a sequence zm ∈ ϕ(S) s.t. infϕ(S) ≤ zm < infϕ(S) + ε. zm → infϕ(S) so
infϕ(S) ∈ϕ(S), and ∃y ∈ S s.t. ϕ(y) = infϕ(S).

Thereforeϕ attains its sup and its inf.

1.5. Review. I think focusing on the properties of compactness can be more important than all the proofs
above. Further, since we’ll typically work with the reals, I think the intuition of compactness as equivalent
to closed and bounded is fine (certainly for this course).
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Table 1: Compactness! What is it good for? Actually, quite a bit.

S is compact:

Definition For any open cover there exists a finite sub-cover.

∀O = {Oω : ω ∈ Ω} open cover ∃W ⊆ Ω s.t. W finite and S =
⋃
ω∈W Oω

Characterization ⇐⇒ sequentially compact: Any sequence has a convergent subsequence.

∀(xm) ∈ S ∃x ∈ S and (xmk ) s.t. xmk → x.

Implications =⇒ S is closed and bounded.

=⇒ any closed subset of S is compact.

=⇒ f (S) is compact for any continuous f .

=⇒ f (S) has a min and a max for any continuous f (EVT).

Heine-Borel In Euclidean space only (RN ): ⇐⇒ S is closed and bounded.

• If S is compact, then I can construct an arbitrary collection of open sets that contains S, and I know I
will get something finite out of it.

• If S is compact, then I can construct an arbitrary sequence in S, and I know I will get something
convergent out of it.

Finally, I wanted to make a note about why continuity is additionally required to get maxima and minima.
It’s easiest to visualize with real functions: Consider f (x) = 1/x if x ̸= 0 and f (x) = 0 if x = 0. This is not
continuous, and does not have a min or a max on, say, [−1, 1], which is a compact set. Visually:

−1 1
x

f (x)

The set is compact, but the function diverges to ∞ as it approaches 0 from the right, and to −∞ as it
approaches 0 from the left.
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2. Correspondences

2.1. “Set-Valued Functions”. A correspondence, denoted Γ : X →→ Y, assigns a subset of Y to each point in X.
In a sense, a correspondence is a “set-valued function” with “input” x ∈ X and “output” is Γ(x) ⊆ Y.2 Some
terminology is completely analogous relative to when we were working with functions:

• X is the domain and Y is the co-domain.

• ∀S ⊆ X let Γ(S) ≡ ⋃{Γ(x) : x ∈ S} is the image of S.

• Γ(X) is the range, and if Γ(X) = Y we say Γ is surjective.

Here’s the first roadblock: What would it mean for a correspondence to be injective? For functions, we want
to capture the idea of one-to-one. A correspondence, however, starts from the premise that a mapping
can be one to many. Is there an analogous idea that we should try to capture? We leave this question
unanswered as an example of why we need to be specially careful when dealing with correspondences.

Example 1. Consider the choice correspondence from utility maximization:

argmax
RN
+

u(x) s.t. p · x ≤ w

We can go a step further and also define the problem over correspondences. Let

Γ(p, w) =
{

x ∈ R+ : p · x ≤ w
}

be the budget correspondence. Then we can define the argmax correspondence as

argmax u(x) s.t. x ∈ Γ(p, w)

Why go through the trouble? The idea is that if we can prove enough theorems and properties of corre-
spondences, re-expressing some problems we’re familiar with in terms of correspondences might make
how to solve them and what their properties are more transparent.

Remark 3. Since correspondences map points to sets, it is typical to refer to correspondences as [property]-
valued, where [property] is any property of a set. For example, they can be closed-valued, compact-valued,
convex-valued, and so on.

2.2. Inverse Images. With functions we had a nice characterizations of continuity: f−1 the inverse image
maps open sets to open sets. What is the analogue for Γ−1?

• f−1(O) = {x ∈ X : { f (x)} ⊆ O}.

• f−1(O) = {x ∈ X : { f (x)} ∩ O ̸= ∅}.

These are analogous for functions, but for correspondences it defines two distinct sets, the upper inverse
image and the lower inverse image, which will give rise to two different notions of continuity:

Definition 4. Given a correspondence Γ : X →→ Y

• Γ−1(O) ≡ {x ∈ X : Γ(x) ⊆ O} is the upper inverse image.

2Conversely, functions are “singleton-valued correspondences,” where f (x) is equivalent to the correspondence Γ(x) = { f (x)}.

9



Math Camp Aug 16, 2023 – Lecture III 2. Correspondences

• Γ−1(O) ≡ {x ∈ X : Γ(x) ∩ O ̸= ∅} is the lower inverse image.

Note that Γ(x) ̸= ∅ and Γ(x) ⊆ O =⇒ Γ(x) ∩ O ̸= ∅. So necessarily Γ−1(O) ⊆ Γ−1(O).

Figure 2: Visualizing the Upper and Lower Inverse Image

x0 x1 x2 x3

O

x

Γ(x)

In the image above, every point x ∈ [x0, x3] is s.t. Γ(x) ∩ O ̸= ∅, so Γ−1(O) = [x0, x3]; however, not every
point is s.t. Γ(x) ⊆ O. In this case, only points y ∈ (x1, x2) are s.t. Γ(y) ⊆ O, so Γ−1(O) = (x1, x2). Last, if
z ∈ [0, x0) then Γ(z) is neither contained in nor intersects with 0.

2.3. Hemicontinuity. We present two distinct definitions of continuity. If we use the upper inverse image:

Definition 5. Γ : X →→ Y is upper hemi-continuous (uhc) if whenever O ⊆ Y is open, Γ−1(O) is also open.

If Γ(x) ⊆ O then x ∈ Γ−1(O); if Γ−1(O) is open ∃δ > 0 s.t. Bδ(x) ⊆ Γ−1(O), so Γ(Bδ(x)) ⊆ O. Therefore we
have the following equivalent definition of uhc.

Definition 6. Γ : X →→ Y is uhc iff ∀O ⊆ Y open with Γ(x) ⊆ O ∃δ > 0 s.t. Γ(Bδ(x)) ⊆ O.

We can similarly define continuity in terms of the lower inverse image instead:

Definition 7. Γ : X →→ Y is lower hemi-continuous (lhc) if whenever O ⊆ Y is open, Γ−1(O) is also open.

If Γ(x) ∩ O ̸= ∅ then x ∈ Γ−1(O); if Γ−1(O) is open ∃δ > 0 s.t. Bδ(x) ⊆ Γ−1(O), so z ∈ Bδ(x) =⇒
Γ(z) ∩ O ̸= ∅. Therefore we can equivalently write the following definition:

Definition 8. Γ : X →→ Y is lhc iff ∀O ⊆ Y open with Γ(x) ∩ O ̸= ∅ ∃δ > 0 s.t. Γ(z) ∩ O ̸= ∅ ∀z ∈ Bδ(x).

• Intuitively, if Γ is uhc at x and z is “close” to x, every point in Γ(z) will be “close” to some point in Γ(x).

If there is some neighborhood around x s.t. every open set containing Γ(x) also contains Γ(z) for z in
the neighborhood, then nothing in Γ(z) can be suddenly “far” from the all values of x.

• By contrast, if Γ is lhc at x and z “close” to x, each point in Γ(x) will be “close” to some point in Γ(z).

Intersections, unlike containment, can happen at any point. Hence lhc does not require every point in
Γ(z) to always be close to Γ(x); rather, it requires every point in Γ(x) to be close to some point in Γ(z).
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Figure 3: Upper and Lower Hemicontinuity (Inverse Images)

y1

y2

x0 x1 x2

O

x

Γ(x)

Lower but not upper hemicontinuous

y1

y2

x0 x1 x2

O1

O2

O3

x

Γ(x)

Upper but not lower hemicontinuous

We will formalize the intuition above when we discuss the sequential definition of uhc and lhc.

Let Γ : [x0, x2] →→ R be as depicted above:

• In the left figure, Γ(x1) = y1 ⊆ O; however, no matter how small the δ, y2 ∈ Γ(x1 + δ) /∈ O, meaning the
set values of points near x1 always have elements far away from Γ(x1). Hence it cannot be uhc. Formally,
Γ−1(O) = [x0, x1], which is not open.

But it is lhc: The set values of every point near x1 will intersect O, and generally every set intersecting
Γ(x1). Formally, for any such set Γ−1(O) = [x0, x2] (note X = [x0, x2], and X is open relative to X).

• In the right figure, y1 ∈ Γ(x1) ∩ O1 ̸= ∅, and every point around x1 will also intersect O1. However,
y2 ∈ Γ(x1) ∩ O2 ̸= ∅, but no matter how small the δ, Γ(x1 − δ) ∩ O2 = ∅, meaning not every element in
Γ(x1) is near the set-values of points near x1. Formally, Γ−1(O2) = [x1, x2], which is not open in [x0, x2].

But it is uhc: O3, and generally any set containning all of x1, will also contain the set value of every point
around x1. Formally, Γ−1(O3), or any such set, is [x0, x2], the space itself, which is open.

2.4. Sequential Characterization of Hemicontinuity.

Remark 4. It not uncommon to encounter the sequential characterizations as the definition (in fact the
very first time I learned what a correspondence was, I only encountered the sequential characterization of
hemicontinuity).

Theorem 8. Γ : X →→ Y. If ∀(xm) ∈ X, (ym) ∈ Y s.t. xm → x, ym ∈ Γ(xm) ∃ymk → y for some y ∈ Γ(x), then
Γ is uhc at x. If Γ is compact-valued, the converse is also true.

Some remarks:

• The definition says that for every sequence converging to x and every sequence in the set-values of xm,
ym ∈ Γ(xm), there is a convergent sub-sequence to an element y ∈ Γ(x).

Recall our intuition for uhc: Every point in Γ(z), for z sufficiently “close” to x, is also “close” to some point
of Γ(x). This closely mirrors the sequential definition: If every time we get arbitrarily close to x (that

11
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is, xm → x) every point in those set values (arbitrary ym ∈ Γ(xm)) will be arbitrarily close to some point
in Γ(x) (there is some sub-sequence ymk → y ∈ Γ(x), which means that every sequence in Γ(xm) has
infinitely many points near some value of Γ(x)).

• So why doesn’t the converse hold? The above sequential definition requires the function to be uhc, but
uhc correspondences don’t have to be closed or bounded:

Figure 4

x

Γ(x)

Γ(x) = (1, 2) on R++

x

Γ(x)

Γ(x) = [0, 1/x] on R++ and Γ(0) = R+

◦ The figure on the left is uhc: Since the function is constant, if Γ(x) ⊆ O for any O, then Γ(y) =

Γ(x) ⊆ O for every y ∈ (0, ∞). Thus Γ−1(O) = R++. However, for 1/n → 0 and 1 + 1/n ∈ Γ(1/n),
1 + 1/n → 1 /∈ Γ(0) = (1, 2).

◦ The figure on the right is also uhc: Take any open O ⊂ R+ s.t. Γ(x) ⊆ O and we have Γ−1(O) = (x, ∞).
Last, if Γ(0) ⊆ O ⊆ R then O = R+, and Γ−1(R+) = [0, 1] = X (and, again, X is open relative to itself).
However, take 1/n → 0 and n ∈ Γ(1/n); n → ∞ /∈ R+.

• Therefore uhc is not enough to guarantee that a sequence always exists. More precisely, it’s not so much
that we need the set-values of Γ to be closed and bounded: We need them to be compact, and that will
guarantee the existence of a sub-sequence. (Recall here the link between compactness and sequential
compactness, which would show up in a proof of Theorem 8.)

Theorem 9. Γ : X →→ Y is lhc at x ∈ X ⇐⇒ ∀(xm) ∈ X s.t. xm → x ∈ X and ∀y ∈ Γ(x) ∃(ym) ∈ Y s.t.
ym → y and ym ∈ Γ(xm) whenever m ≥ M for some M.3

Given both sequential definitions of uhc and lhc, we repeat our intuition:

1. If Γ is uhc at x then every point y ∈ Γ(z), for z arbitrarily close to x, is itself close to some point in Γ(x).
The limit definition follows this closely: As xm → x, every sequence ym ∈ Γ(xm) will have inifinitely many

3I originally did not have this last requirement; this just says ∃ sequence whose tail end is in the correspondence and converges to
y ∈ Γ(x). If Γ(xm) is non-empty then ym for m < M can just be any arbitrary element of Γ(xm) and then you wouldn’t need the caveat.
However, I want to define lhc even if Γ(xm) is empty for finitely many m, which requires me to add this caveat of the tail end.

12
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elements arbitrarily close to some point in Γ(x), so there will be some sub-sequence ymk → y ∈ Γ(x)
(with the caveat that Γ is compact-valued).

2. If Γ is lhc at x and z is arbitrarily close to x, then every point y ∈ Γ(x) must be arbitrarily close to some
point in Γ(z). Again, the limit definition follows this: As xm → x, every point y ∈ Γ(x) will be arbitrarily
close to some point in Γ(xm), so there will exist a sequence ym ∈ Γ(xm) s.t. ym → y.

Figure 5: Upper and Lower Hemicontinuity (Sequences)

y1

y2

x

yn

x+nx−n

Lower but not upper hemicontinuous

y1

y2

x

yn

x+nx−n

Upper but not lower hemicontinuous

2.5. Closed Graph.

Definition 9. The graph of a correspondence Γ : X →→ Y, denoted Gr(Γ), is

Gr(Γ) ≡ {(x, y) ∈ X × Y : y ∈ Γ(x)}

Γ has a closed graph if . . . its graph is closed.4

Definition 10. Γ is closed at x ∈ X if ∀(xm) ∈ X∞, (ym) ∈ Y∞ s.t. xm → x ∈ X, ym → y ∈ Y, and ym ∈ Γ(xm)

we also have y ∈ Γ(x). Γ has a closed graph if it is closed at every x ∈ X.

This definition might seem complicated but if you look closely, it is just the sequential characterization of
what it means for a set to be closed (it has all its limits).

4Closed in X × Y.

13
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Figure 6: Not Closed Graph

ym y /∈ Γ(x)

xm x x

Γ(x)

The idea is that every series in Γ(xm) that converges will converge to a point in Γ(x) (if xm → x).

Remark 5. Closed graph is not the same as closed-valued!

The example in Figure 6 above is closed-valued but not closed graph, so the former need not imply the latter.
Further, a closed graph is not the same as uhc: A uhc correspondence doesn’t have to be closed-valued,
which would mean that it would not have a closed graph (if Γ(x) is not closed-valued, then there is some
sequence in Γ(x) that converges to a point outside of Γ(x), contradicting the definition of closed graph).

Conversely, a correspondence can have a closed graph with a discontinuity. Γ(x) = {1/x} if x > 0 and
Γ(x) = {0} if x = 0. Note that any sequence in Γ(x) as x → 0+ will diverge, so there is no contradiction of
the closed graph property. However, there is clearly a discontinuity at 0.

Can you tell, by the way, whether the correspondence in Figure 6 is uhc, lhc, both, or neither?

What we can say is that closed graph, closed-valued, and uhc are related:

Claim 1. 1. If Γ : X →→ Y has a closed graph and Y is compact then Γ is uhc.

2. If Γ is uhc and closed-valued then it has a closed-graph.

2.6. Berge’s Theorem of the Maximum.

Theorem 10 (Berge’s Maximum Theorem). Let Γ : Θ →→ X be compact-valued,ϕ : X ×Θ → R be continuous,

σ(θ) ≡ argmax
x∈Γ(θ)

ϕ(x,θ)

ϕ∗(θ) ≡ max
x∈Γ(θ)

ϕ(x,θ)

If Γ is both upper and lower hemi-continuous at some θ ∈ Θ then

1. σ : Θ →→ X is compact-valued everywhere, uhc at θ, and closed at θ.

2. ϕ∗ : Θ →→ R is continuous at θ.

14
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Application to Economics Recall the utility maximization problem with parameters (p, w) ∈ RN+1
+ :

v(p, w) ≡ max u(x) s.t. p · x ≤ w

x(p, w) ≡ argmax u(x) s.t. p · x ≤ w

Recall B(p, w) = {x : p · x ≤ w} the budget correspondence is compact. It turns out it is also uhc and lhc, so
we not only know that the maximum exists (if u(x) continuous), but in particular the indirect utility function
v(p, w) is continuous and the demand correspondence x(p, w) is compact-valued, uhc, and closed.

Remark 6. For the curious, I offer proofs the BC is compact, uhc, and lhc in Appendix B.

3. Fixed Point Theorems

Definition 11. A self-map f : S → S has a fixed point if ∃x∗ ∈ S s.t. x∗ = f (x∗).

Theorem 11 (Brouwer’s FPT). Take any S ⊆ R compact, convex, and non-empty. If f : S → S is continuous
then it has a fixed point.

Definition 12. A self-map correspondence Γ : S →→ S has a fixed point if ∃x∗ ∈ S s.t. x∗ ∈ Γ(x∗).

Definition 13. A set S is convex if ∀x, y ∈ S and ∀α ∈ [0, 1] we haveαx + (1 −α)y ∈ S.

Theorem 12 (Kakutani’s FPT). Take any S ⊆ RN compact, convex, and non-empty. If a correspondence
Γ : S →→ S is upper hemicontinuous, convex-valued, and closed-valued (alternatively, convex-valued and
has a closed graph) then it has a fixed point.

Fixed Point

f continuous

S × S

x

f (x)

Both FPT hold

f has a jump.

S × S

x

f (x)

Both FPT fail

Figure 7: Examples of when f does or not have a fixed point
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Fixed Point

Γ is upper hemicontinuous

S × S

x

Γ(x)

Kakutani’s FPT holds

Γ upper hemi but not convex-valued

S × S

x

Γ(x)

Kakutani’s FPT fails

Figure 8: Examples of when Γ does or not have a fixed point

Application to Economics The proof of the existence of a Nash Equilibrium in game theory is an applica-
tion of Kakutani’s fixed point theorem.

• We have N players, 1, 2, . . . , N and the corresponding strategy sets, S1, . . . , SN .

• Let s = (s1, . . . , sN) be any collection of strategies from all players, with si ∈ Si.

• Let s−i = (s1, . . . , si−1, si+1, . . . , sN) the collection of strategies from all players other than i.

• For each player i we can define a best-response correspondence to the strategies of other players,

bi(s−i) = argmax
si∈Si

ui(si ; s−i)

the utility-maximizing strategy for i given the other player’s strategies.

• Let b(s) = (b1(s−1), . . . , bN(s−N)) be the collection of best-response strategies from all players.

A Nash Equilibrium is then defined as a set of strategies such that no player has an incentive to deviate.
That is, the strategy s∗i chosen by player i is in the set of best responses to all the other strategies, s∗−i, or
s∗i ∈ bi(s∗−i) ∀i. We can hence express a Nash Equilibrium s∗ as a fixed point of b,

s∗ ∈ b(s∗)

If Si are compact, non-empty, and convex-valued, and ui are continuous and quasiconcave (this gives
convexity), then we will be able to apply Kakutani’s fixed point theorem to show that s∗ ∈ b(s∗) for some
s∗ ∈ S = ∏

N
i=1 Si (noting b : S → S is upper hemicontinuous by Berge’s Maximum Theorem).

4. Fun Remarks

• It is rumored than when John Nash came to John Von Neumann to discuss his ideas and his proof of
the existence of a Nash Equilibrium (though of course he probably just called it “Equilibrium”), Von

16
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Neumann interrupted to dismiss the result as trivial: “That’s just a fixed point theorem,” he said. I always
found this anecdote to be quite fascinating, in particular given the extent to which game theory plays a
role in modern economics.

• The other famous application of Kakutani’s fixed point theorem in economics is in the proof of the
existence of general equilibrium. A perhaps lesser known but no less fun example of course the fair
cake-cutting theorem, where Kakutani guarantees that there exists a division of a cake (which is a
non-uniform resource) among n agents that is not only Pareto efficient but envy-free (i.e. no agent
prefers someone else’s allocation). The cake, of course, is a lie, and the theorem refers to an allocation
as a disjoint n-partition of a set among n agents with heterogeneous preferences over the set.

• Speaking of general equilibrium, I very briefly met Arrow once after he gave a short talk; I basically
said hello and that was that. However, a classmate of mine had the, let’s say, very fun idea to ask Arrow
to autograph his class notes on general equilibrium, which I always remember as one of the more
endearing things I’ve seen someone do.

• I first encountered the definition of compactness several years ago during my undergraduate real
analysis course. As I’ve mentioned, I thought the definition was rather disconcerting5; I heavily relied
on the “closed and bounded” intuition and the sequential compactness characterization to get through
that part of the course. I repeat this point here because you shouldn’t be too concerned if you don’t find
compactness terribly easy at first. It is a difficult and deep concept to wrap your head around (at least I
think so). I am sure you’ll get there (:

5To be candid, I legit thought “the fuck is this?”
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Appendix A. Proof of Theorem 3

Proof. Suppose −∞ < a < b < ∞ and let S = [a, b]N be such that for some open cover F of S there does
not exist a finite sub-cover. Bisect S into 2N equal closed hypercubes with planes parallel to the faces of S
(by the way, this is why I call this proof a “sketch,” as I have not defined hypercube, plane, parallel, or face).
While that sounds fairly complicated, we can visualize it in 3-dimensional space:

At least one cube has no finite sub-cover (maybe none do, but we only need one); call this C1. Recursively,
partition Cm into 2N equal closed cubes and let Cm+1 be one such cube with no finite sub-cover.

1. Cm are closed.

2. Cm are non-empty (otherwise Cm−1 is empty, contradiction).

3. Cm+1 ⊂ Cm

4. Let δ be the maximum distance between any two points in S. The maximum distance in Cm is
δ

2m .

5. Cm is not covered by any finite sub-cover of F by construction.

For each m, let xm be any element of Cm. This sequence is Cauchy: For any ε > 0,

k, l > M >
log(δ)− log(ε)

log(2)
=⇒ d(xk, xl) <

δ

2M < ε

Because RN is complete, we know that xm → x for some x ∈ RN . Therefore,6

x ∈ Cm ∀m

Since F has an infinite sub-cover of Cm (which might be comprised of all the sets in F ), x ∈ Fω for some
set in that infinite sub-cover. Fω is open, so for some ε > 0,

d(y, x) < ε =⇒ y ∈ Fω

6This uses the fact that each Cm is closed and xm+n ∈ Cm for all n; hence the limit is also in Cm .
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But x ∈ Cm for any m, and the maximum distance between any two points in Cm is δ/2m. Hence for M s.t.

M >
log(δ)− log(ε)

log(2)
=⇒ d(x, y) < ε ∀y ∈ CM =⇒ y ∈ Fω =⇒ CM ⊆ Fω

{Fω} is a finite sub-cover of CM, a contradiction. Therefore [a, b]N is compact.

Appendix B. Budget Correspondence Properties

Here are some formal proofs about some properties I claimed for the BC. Only for fun!

B.1. Compact. We invoke Heine-Borel. First, let us see B(p, w) is closed:

[B(p, w)]C ≡ RN
+ \ B(p, w) =

{
x ∈ RN

+ : p · x > w
}

Let δ = (p · x − w)/∑ pk. Noting ∥x − z∥ < δ =⇒ |xk − zk| < δ, we have

p · (x − z) ≤ p · |x − z| < p · δ =
p · x − w

∑ pk
∑ pk = p · x − w

p · x − p · z < p · x − w =⇒ w < p · z =⇒ z ∈ [B(p, w)]C

Hence [B(p, w)]C is open, meaning its complement, B(p, w), is closed. To see its bounded,

w ≥ p · x ≥ ∑ xk · min pk

w
mink pk

≡ M ≥ ∑ xk
!
≥ xk ∀k

(to see why
!
≥ is true, recall x ∈ RN

+ =⇒ xk ≥ 0 ∀k). Hence x ∈ B(p, w) =⇒ 0 ≤ xk ≤ M ∀k, meaning
B(p, w) is bounded. Since B(p, w) is a closed and bounded subset of RN

+ , it is also compact.

B.2. Upper hemi-continuous. Fix any (p, w) and consider any arbitrary sequence (pm, wm) → (p, w) and
any arbitrary sequence xm ∈ B(pm, wm). If we can show that ∃xmk → x for some x ∈ B(p, w), then B(p, w)

is upper hemicontinuous (uhc).

1. First, find an arbitrary finite bound for xm. For instance, let ε = 1; since (pm, wm) → (p, w) then ∃M s.t.

m ≥ M =⇒ ∥(pm, wm)− (p, w)∥ < ε =⇒ |pk,m − pk| < ε and |wm − w| < ε

for each k. Therefore any xm ∈ B(pm, wm) is s.t.

(p −ε) · xm ≤ pm · xm ≤ wm ≤ w +ε =⇒ xm ∈ B(p −ε, w +ε)

for each m ≥ M.

2. Now show that xm has a convergent sub-squence. In Subsection B.1 we showed B is compact for any
(p, w), so B(p − ε, w + ε) is compact and, in turn, sequentially compact. Hence ∃xmk → x for some
x ∈ B(p − 1, w + 1). Since pmk · xmk is continuous (it’s just a linear function of pmk and xmk ),

pmk → p and xmk → x =⇒ pmk · xmk → p · x
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3. Finally, pmk · xmk → p · x and wmk → w and pmk · xmk ≤ wmk ∀k =⇒ p · x ≤ w =⇒ x ∈ B(p, w).

Therefore ∀xm ∈ B(pm, wm) ∃xnk → x for some x ∈ B(p, w), meaning B(p, w) is uhc. In sum, to prove a
correspondence is uhc the degree of freedom we have is that we can converge to any point in B(p, w);
however, the restriction is that the sequence is arbitrary. We used sequential compactness because that
guarantees that a convergent sub-sequence exists, and then we showed the limit was in the correspondence.

B.3. Lower hemi-continuous. Fix any (p, w) and consider an arbitrary sequence (pm, wm) → (p, w) and
any point x ∈ B(p, w). If ∃xm ∈ B(pm, wm) s.t. xm → x then B(p, w) is lhc.

1. Here we are restricted in that every point in the correspondence must have a sequence that converges
to it. However, the degree of freedom we have is that we can pick the sequence. Our strategy, then, is to
construct a sequence that will be contained in B(pm, wm).

2. Let x̃n,k ≡ max{xk − 1/n, 0}. That is, x̃n ≡ max{x − 1/n, 0} element-wise. We claim ∀n > N ∃Mn s.t.

m ≥ Mn =⇒ x̃n ∈ B(pm, wm) (or, equivalently)pm · x̃n ≤ wm

3. Here we use the fact (pm, wm) → (p, w), so by definition ∀δn > 0 ∃Mn s.t.

m ≥ Mn =⇒ ∥(pm, wm)− (p, w)∥ < δn =⇒ |pk,m − pk| < δn and |wm − w| < δn

4. Therefore, we want to find δn > 0 s.t. (p + δn) · x̃n ≤ (w − δn). The corresponding Mn would give

m ≥ Mn =⇒ pm · x̃n ≤ (p + δn) · x̃n ≤ (w − δn) ≤ wm

Recall x ∈ B(p, w), so p · x ≤ w, meaning it is sufficient for δn to be s.t.

δn ·
(

x +
1
n

)
+ p · 1

n
≤ −δn

∑ δnxk −∑
δn

n
−∑

pk
n

≤ −δn

δn ∑ xk − N
δn

n
− 1

n ∑ pk ≤ −δn

δn

(
∑ xk −

N
n
+ 1
)
≤ 1

n ∑ pk

Therefore we can see that

δn ≡ ∑ pk
n ∑ xk − N + n

=⇒ (p + δn) · x̃n ≤ (w − δn) =⇒ pm · x̃n ≤ wm ∀m ≥ Mn

where δk > 0 because we set up k > L and p ≫ 0.

5. Last, we define the sequence that gives us the result:

• Let xm = 0 for m < MN+1 (0 is in every budget correspondence).

• Let xm = x̃n for m : Mn ≤ m < Mn+1 otherwise (n ≥ N + 1).

since 1/n → 0 we have x̃n → max{x, 0} = x (recall x ≥ 0 because x ∈ RN
+ ).

Hence for any x ∈ B(p, w) we can construct a sequence xm → x s.t. xm ∈ B(pm, wm) for each m, meaning
B(p, w) is lhc.
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closed, 13
closed and bounded, 8
closed graph, 13
closed subset, 8
co-domain, 9
compact, 2
convex, 15
cover, 2

domain, 9

evt, 6, 8

finite sub-cover, 2, 8
fixed point, 15

graph, 13

image, 9

lower hemi-continuous, 10
lower inverse image, 10

not, 14

open cover, 2, 8

sequentially compact, 2, 8
surjective, 9

upper hemi-continuous, 10
upper inverse image, 9
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