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1. Sequences

A sequence is a collection of elements of a set indexed by the natural numbers. We will not be terribly
precise with notation,1 and denote sequences with elements in S as (xm) ∈ S.

Definition 1. Let (xm) ∈ S be a sequence:

a) (xm) is increasing if ∀m we have xm ≤ xm+1; it is strictly increasing if xm < xm+1.

b) (xm) is decreasing if ∀m we have xm ≥ xm+1; it is strictly decreasing if xm > xm+1.

c) (xm) is (strictly) monotonic if it is (strictly) increasing or decreasing .

d) (yk) is a subsequence of (xm) if ∃ some strictly increasing sequence (nk) ∈ N s.t. yk = xmk .

e) (xm) is bounded above, below, or bounded if {xm}m∈N is bounded above, below, or bounded (resp).

f) (xm) → +∞ if ∀N > 0 ∃M s.t. m ≥ M =⇒ xm ≥ M. (xm) → −∞ if ∀N < 0 ∃M s.t. m ≥ M =⇒
xm ≤ M. If either property holds, we say the sequence (xm) diverges.

1Formally, a sequence is an element of the infinite Cartesian product of RN × . . . ×RN . While tempting to define a sequence as a
countable or finite subset of RN , sets have no notion of order; further, sequences can have repeated elements.
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1.1. Convergence.

Definition 2. A sequence xm converges to x if ∀ε > 0 ∃M ∈ N s.t. d(xm, x) < ε whenever m ≥ M. We
denote this as xm → x or limm→∞ xm = x.

We can visualize this idea in the figure below: xm is eventually contained within any ε-ball if x.2

Converges

x
ε

xm

Does not converge

x ε

xm

Claim 1. A sequence converges to at most one limit.

Proof. This is a consequence of the fact d(x, y) ⇐⇒ x = y. Suppose xm → x and xm → y. If x ̸= y, then
d(x, y) > 0. Take ε = d(x, y); we know by the definition of convergence that there is some Mx, My s.t. for
m ≥ M = max

{
Mx, My

}
we get

d(xm, x) < ε/2 and d(xm, y) < ε/2

Now the triangle inequality gives

ε = d(x, y) ≤ d(xm, x) + d(xm, y) < ε/2 +ε/2 = ε = d(x, y)

contradiction (ε < ε). Hence d(x, y) = 0, or x = y.

Theorem 1. S is closed ⇐⇒ for any (xm) ∈ S s.t. xm → x for some x ∈ RN , we have that x ∈ S.

This is an equivalent definition of closedness: A set that “contains all its limits.”

Proof. See Subsection 1.2.

Theorem 2. Take any set S ⊆ RN ; the following are equivalent:

a) x ∈ cl(S).

b) ∀ε > 0, Bε(x) ∩ S ̸= ∅.

c) ∃(xm) ∈ S s.t. xm → x.

Proof. We will cycle through the proofs. First we show b =⇒ c: Take any x s.t. b holds. Let 1/m = εm for
each m = 1, 2, 3, . . .; we know that ∃xm s.t. xm ∈ Bεm(x). Now take an arbitrary ε > 0; there is some M ∈ N
s.t. 1/M < ε, so m ≥ M gives xm ∈ Bε(x). Thus xm → x with (xm) ∈ S.

2Recall ε-ball is the equivalent of a neighborhood in Euclidean space, even through here in two dimensions it’s technically a ε-circle.
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Now we show that c =⇒ a. Note that for any closed T s.t. S ⊆ T, we have that (xm) ∈ S =⇒ (xm) ∈ T.
Since T is closed and xm → x, x ∈ T by Theorem 1. Since S ⊆ cl(S) and cl(S) is closed, both by definition,
this proves that c =⇒ a.

To finish, we show that a =⇒ b. Suppose that x ∈ cl(S) but for some ε > 0, Bε(x) ∩ S = ∅. This means
that Bε(x) ⊂ RN \ S. Since Bε(x) is open, cl(S) \ Bε(x) is closed. Further, since x /∈ S (because x ∈ Bε(x)
and Bε(x) ∩ S = ∅), we have that S ⊆ cl(S) \ Bε(x). Since x ∈ cl(S), this implies cl(S) ⊂ cl(S) \ Bε(x). At
the same time, cl(S) is the intersection of every closed set containing S, so cl(S) \ Bε(x) ⊆ cl(S). Thus
cl(S) ⊂ cl(S), a contradiction.

Definition 3. Let (xm) be any sequence. We define

lim sup
m→∞ = lim

m→∞
(

sup
k≥m

xk

)

and

lim inf
m→∞ = lim

m→∞
(

inf
k≥m

xk

)

The lim sup and lim inf do not require convergence. Take, for instance, (xm) = 0, 1, 0, 1 . . .. Clearly
lim sup = 1 and lim inf = 0 but the limit does not exist.

1.2. Sets and Sequences (Visualization). The mathy sequel to Dungeons & Dragons. In this section we will
try to visualize the proof of Theorem 1. This should give some intuition for why convergence is related to
sets being closed beyond the formality of the theorem.

• If a sequence xm converges to x, then it becomes arbitrarily close to a point. If for every (xm) ∈ A s.t.
xm → x we also have x ∈ A, that means that no sequence can ever “escape ” outside of A:

x
xm

x′x′m

By contrapositive, if A is not closed, its complement is not open, so ∃y ∈ RN \ A that cannot be enclosed
in an ε-ball inside of RN \ A. In other words, there is some y s.t. for each εm = 1/m we can find a
corresponding ym ∈ A. The resulting (ym) ∈ A converges to y /∈ A.
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B1/m(y) ∩ A ̸= ∅ ∀m

ym → y, y /∈ A

In other words, if A is not closed, we can find a sequence that “escapes” A, which by contrapositive
proves that if every sequence in A that converges does so to a point in A, the set is closed.

• On the other hand, if A is closed and we have a sequence (ym) ∈ A s.t. ym → y with y /∈ A, then we have
a sequence that “escaped” A. However, A closed implies X \ A is open, and ∃Bε(y) ⊆ RN \ A. Since ym

will get arbitrarily close to y, ∃ym ∈ Bε(y) ⊆ X \ A. Since ym ∈ A by premise, this is a contradiction.

Bε(y) ∩ A = ∅

ym → y and y /∈ A =⇒
∃ym /∈ A, contradiction

I think in general it’s very useful to visualize proofs in R2 (making drawings, as above):

• R is not enough: A ton of things will hold in one dimension that won’t in general, and one-dimensional
intuition can end up being misleading.

• R3 can be too much: I cannot draw 3D very easily and it is harder to visualie clearly (certainly RN would
be too many dimensions).

• R2 is a nice trade-off between rigor an intuition. (I know we discuss properties in more general terms
than in R2, but for intuition I think it’s a great benchmark.)

1.3. Properties of Convergent Sequences.
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Theorem 3. Take any sequence (xm) ∈ RN :

a) xm → x =⇒ xmk → x for all subsequences (xmk ) of (xm).

b) xm → x =⇒ (xm) is bounded. (Is the converse true? Can you prove your answer?3)

c) If xm ≤ ym ≤ zm and xm, zm → x then ym → x.

d) If xm → 0 and (ym) is bounded then xm · ym → 0.

Let xm → x and ym → y:

e) c · xm → c · x for any c ∈ R.

f) xm ± ym → x ± y.

g) xm · ym → x · y.

h) xm/ym → x/y if y ̸= 0.

1.4. Bolzano-Weierstrass.

Theorem 4. Let (xm) ∈ R. If (xm) is bounded and monotonic then (xm) converges.

Theorem 5 (Nested Intervals Theorem). Let Im = [am, bm] s.t. Im+1 ⊆ Im.

a) ∩m∈N Im ̸= ∅

b) If bm − am → 0 then ∩m∈N is a singleton.

Proof. If Im+1 ⊆ Im, then Im ⊆ I1 for all m. Hence

a1 ≤ am ≤ am+1 ≤ bm+1 ≤ bm ≤ b1

for all m. In other words, am and bm are bounded and monotonic, so am → a and bm → b for some a, b by
Theorem 4. Further, since am ≤ bm for all m, we have that a ≤ b (do you see why?4) and Im → [a, b] ̸= ∅. If
bm − am → 0, that means b − a = 0 so the interval [a, b] is just the singleton a = b.

Theorem 6 (Bolzano-Weierstrass). Every bounded sequence in R admits a convergent sub-sequence.

Proof. This follows from the Nested Intervals Theorem above—the trick is to construct the nested intervals,
which we can do for bounded sequences. If (xm) is bounded, first define

I1 = [L, U] = [a1, b1]

3A counterexample is sufficient: xm = (−1)m is bounded above by 1 and below by −1 but does not converge.
4If a > b then we will have that am > bm for some m. That is, pick 0 < ε < a − b; we can then find Ma , Mb s.t.

a −ε/2 < am < a +ε/2 b −ε/2 < bm < a +ε/2

whenever m > max{Ma , Mb}. However, ε < a − b gives

bm < b +ε/2 < a −ε/2 < am

Since bm ≥ am for all m we have a contradiction.
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the interval with enpoints equal to the lower and upper bounds of xm. Let xm1 the first element of the
sub-sequence be any term of xm ∈ I1. Now take

I−1 =

[
a1,

a1 + b1

2

]
I+1 =

[
a1 + b1

2
, b1

]
and let I2 = I−1 if {xm : m ∈ N} ∩ I+1 is non-finite and I2 = I+1 otherwise. Let a2, b2 be the endpoints of I2

and xm2 be any term of xm ∈ I2. We iterate this process: In general

I−k =

[
ak,

ak + bk
2

]
I+k =

[
ak + bk

2
, bk

]
and Ik+1 = I−k if {xm : m ∈ N} ∩ I+k is non-finite and In+1 = I+k otherwise, with xmk any element of xm ∈ Ik.
(What if both halves have a finite intersection?5) We have that

a1 ≤ ak−1 ≤ ak ≤ xmk ≤ bk ≤ bk−1 ≤ b1

Furthermore, bn − an =
b1 − a1

2n−1 → 0. Hence we can apply the Nested Intervals Theorem: an → a and

bn → b with a = b implies xmk → a = b.

1.5. Cauchy Sequences.

Definition 4. A sequence is Cauchy if ∀ε > 0 ∃M s.t.

m, n > M =⇒ d(xm, xn) < ε

Theorem 7. If (xm) converges, then it is Cauchy.

Proof. Suppose xm → x; by the triangle inequality

d(xm, xn) ≤ d(xm, x) + d(xn, x)

Now take any ε > 0; for ε/2 we have that for some M, m, n > M gives

d(xm, x) <
ε

2
d(xn, x) <

ε

2

Hence
d(xm, xn) ≤ d(xm, x) + d(xn, x) <

ε

2
+

ε

2
= ε

which shows (xm) is Cauchy.

While the converse of the theorem above is also true in RN , during your math course you will probably
encounter the fact that in general metric spaces, Cauchy sequences needn’t converge. (The reason is, again,
this property of Euclidean space called “completeness.”)

Theorem 8. If (xm) is a Cauchy sequence in R then (xm) converges.

5Note that for k > 1, it must always be that either I+k or I−k have a non-finite intersection with {xm : m ∈ N}, since we chose Ik to have
a non-finite intersection. The only way both halves will have a finite intersection is if I1 is finite to begin with. However, this means
that some M, xn = xm whenever n, m > M, which means we have a convergent sub-sequence xmk = xM+1 with mk = M + k.
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Proof. I will show this in R: Cauchy sequences are bounded (why?), which means that there exist some
sub-sequence xmk that converges to some x. We show that this is also the limit for the sequence xm. By the
triangle inequality,

d(xm, x) ≤ d(xm, xmk ) + d(xmk , x)

Take any ε > 0, then for ε/2 we can find K s.t. k > K gives

d(xmk , x) < ε/2

because xmk → x, and M s.t. n, mk > M gives

d(xm, xmk ) < ε/2

because xm is Cauchy. Take k > K s.t. mk ≥ M. Then for n > M we have

d(xm, x) ≤ d(xm, xmk ) + d(xmk , x) < ε/2 +ε/2 = ε

which is what we wanted to show. This proof should generalize toRN if you argue that along each coordinate,
(xm) is bounded and then use that to find a candidate limit x. Then the identical argument goes through
(note it used generic properties of the distance rather than anything specific to R).

Remark 1. The sticking point about “completeness” being required has to do with the fact the candidate
limit x needn’t be in the space (e.g. take some sequence in Q that “converges” to π /∈ Q).

2. Continuous Functions

The intuition for continuity is that “you can draw the function without picking up your pencil.” (What about
asymptotes like 1/x at 0?6) More precisely, if two points in the domain are close, the corresponding points
in the co-domain must also be close. Put another way, a small neighborhood in the domain maps to a small
neighborhood in the co-comain. (Note that the converse is not true! Take f (x) = x2; f (−x) = f (x) = x2,
so the points are close in the image—they are identical—but as x gets large, x,−x get farther apart.)

Figure 1: Intuition for Continuity

also close

close

x

f (x)

Continuous

not close

close

x

f (x)

Not Continuous

6The intuition should still hold because the function is not defined at 0; with infinitely long paper you needn’t pick up your pencil.
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Definition 5. A function f : X → Y is continuous at x ∈ X if for every ε > 0 there exist a δ > 0 s.t.

d(z, x) < δ =⇒ d( f (z), f (x)) < ε

Put another way, z ∈ Bδ(x) =⇒ f (z) ∈ Bε( f (x)), or

f (Bδ(x)) ⊆ Bε( f (x))

If f is continuous at every x ∈ X we say it is continuous.

Proposition 1. Letϕ : RN → R. Ifϕ is continuous then the sets
{

x ∈ RN : ϕ(x) ≥ α
}

and
{

x ∈ RN : ϕ(x) ≤ α
}

are closed for allα ∈ R.

Proof. Let A =
{

x ∈ RN : ϕ(x) ≥ α
}

and B = RN \ A. If B is open then A is closed. Note

B =
{

x ∈ RN : ϕ(x) < α
}

Pick any x ∈ B and let 0 < ε < α −ϕ(x). Then sinceϕ is continuous we know there is some δ > 0 s.t.

z ∈ Bδ(x) =⇒ ϕ(x)−ε <ϕ(z) <ϕ(x) +ε < α =⇒ z ∈ B

therefore B is open (for any point ∃δ-ball that is entirely in B). Thus RN \ B = A is closed. The proof for the
lower sets is analogous.

Theorem 9. Let f : X → Y and g : f (X) ⊆ Y → Z with X, Y, Z ⊆ RN . If f , g are continuous then
(g ◦ f ) : X → Z is continuous.

Theorem 10. Let f : X → R and g : X → R be continuous functions. Then

1. h(x) = f (x)± g(x) are continuous functions.

2. h(x) = f (x) · g(x) is continuous.

3. h(x) = f (x)/g(x) is continuous whenever g(x) ̸= 0.

3. Sequential and Open Set Characterizations

Remark 2. Continuous functions don’t map open sets to open sets! Consider f (x) = x2. The image of
(−2, 2) is [0, 2), which is not open. Further, evern if all maps of closed sets are closed, the function might
not be continuous. For example, Consider a function that is 0 if x < 0 and 1 if x ≥ 1. This has a jump at 1,
but f ([a, b]) is either {0} , {1} , or {0, 1}, which are closed.

Last, if a function is continuous the inverse image need not be. Consider a function f : [0, 1) → R2 that
maps the line into a circle:

8
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0 1/2 1

f

a b

f−1

f−1(b) f−1(a)

We can see that a, b are close in the image, but not in the inverse image.

The remarks above all get to the same idea: Continuity states that points in the image are close if the points
in the domain are close, not the converse. Hence we have the following characterization in terms of the
inverse image and converging sequences.

Theorem 11. The following are equivalent for any f : RN → RM:

a) f is continuous.

b) If O ⊆ RM is open, f−1(O) is open.

c) If S ⊆ RM is closed, f−1(S) is closed.

d) For every (xm) ∈ RN s.t. xm → x for some x ∈ RN , f (xm) → f (x).

Proof. See Subsection 3.1.

3.1. Sets and Continuity (Visualization). We show Theorem 11 using, again, drawings in R2.

Proof. We cycle through the statements. If we show a =⇒ b =⇒ c =⇒ d =⇒ a then we have shown
they are equivalent.

1. a =⇒ b. First, it is a good idea to write down what you have and what you want to show:

• Continuity means that ∀ε > 0 ∃δ > 0 s.t. z ∈ Bδ(x) =⇒ f (z) ∈ Bε( f (x)).

RN

x

z

δ

Bδ(x)

=⇒

RM

f (x)

f (z)

ε

Bε( f (x))

We want to show that if O ⊆ RM is open, then f−1(O) is open. That is, ∀x ∈ f−1(O) ∃δ > 0 s.t.
z ∈ Bδ(x) =⇒ z ∈ f−1(O). You will note this is a very similar statement!

9



Math Camp Aug 15, 2023 – Lecture II 3. Sequential and Open Set Characterizations

RN

x

z

Bδ(x)

RM

O

f−1(O)

• It’s basically the same picture: All we are missing is Bε( f (x)) and it looks like we’re done. How do we
get it? We use the fact that O is open in RM.

Pick any x ∈ f−1(O)

RN

x

∃ε > 0 s.t. Bε( f (x)) ⊆ O

RM

O

Bε( f (x))

f (x)

∃δ s.t. z ∈ Bδ(x) =⇒ f (z) ∈ Bε( f (x))
(by the continuity assumption!)

RN

x

z
Bδ(x)

=⇒

RM

O

Bε( f (x))

f (x)

f (z)

Note f (z) ∈ Bε( f (x)) ⊆ O, so z ∈ f−1(O). This statement is the heart of the proof! It is not obvious
that Bδ(x) will be contained in f−1(O), so we need the link with Bε( f (x)) we drew above. Only then
can we say that for arbitrary x we found δ > 0 s.t. z ∈ Bδ(x) =⇒ z ∈ f−1(O); by definition that
means the set is open.

10
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2. We show c ⇐⇒ b. First, consider any closed set S ∈ RM , so RM \ S is open; by premise, f−1(RM \ S) is
also open, which means RN \ f−1(RM \ S) = f−1(RN \ (RM \ S)) = f−1(S) is closed. (The only sticking
point here would be to show that in general f−1(RM \ O) = RN \ f−1(O), which I trust you can do.7)
Now consider open set O ∈ RM, so RM \ O is open; by premise, f−1(RM \ O) is also closed, which
means RN \ f−1(RM \ O) = f−1(O) is open. You will notice this is an entirely analogous argument.

3. For this one it is easier to show that b =⇒ d (noting we already argued c =⇒ b).

• ∀O ⊆ RM, if O open then f−1(O) open. This means that ∀x ∈ f−1(O) ∃δ s.t. Bδ(x) ⊆ f−1(O).

• We WTS xm → x =⇒ f (xm) → f (x); i.e. ∀ε > 0 ∃M s.t. m ≥ M =⇒ f (xm) ∈ Bε( f (x)).

Start with any sequence xm → x

RN

x

xm

Pick any ε > 0 and note Bε( f (x)) is open.

RM

Bε( f (x))
f (x)

Hence f−1(Bε( f (x))) is open, and
∃δ > 0 s.t. Bδ(x) ⊆ f−1(Bε( f (x)))

RN

x

Bδ(x)

xm

f−1(Bε( f (x)))

xm → x so ∃M s.t.
m ≥ M =⇒ xm ∈ Bδ(x)

RN

x

Bδ(x)

xM

f−1(Bε( f (x)))

xm ∈ Bδ(x) ⊆ f−1(Bε( f (x))) =⇒ f (xm) ∈ Bε( f (x))

RM

Bε( f (x))
f (x)

f (xM)

7The way to prove two sets are equal is to show either set conains the other. Take any x ∈ f−1(RM \ O) ⊆ RN , so f (x) ∈ RM \ O. If
x ∈ f−1(O) then f (x) ∈ O, contradiction. Hence x ∈ RN and x /∈ O, so x ∈ RN \ f−1(O). Pick z ∈ RN \ f−1(O). If f (z) ∈ O then
z ∈ f−1(O), contradiction. Hence f (z) ∈ RM \ O, which means z ∈ f−1(RM \ O).

11
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Hence for any xm → x, for any ε > 0 we found M s.t.

m ≥ M =⇒ xm ∈ f−1(Bε( f (x))) =⇒ f (xm) ∈ Bε( f (x))

which by definition means f (xm) → f (x). The tricky step here was that f−1(Bε( f (x))) does not
need to be a nice set. We need the premise that the inverse image of open sets is open so that we
can fit a neighborhood inside of it, and then use the fact xm → x.

4. Finally, we show that d =⇒ a. We do this by contradiction.

• It is not clear why contradiction is the way to go; it boils down to the fact I think it’s easier, but I don’t
think that’s obvious. In general, if unsure how to start a proof, one strategy is to try to make progress
with a direct proof, and if you get stuck, switch to contradiction or contrapositive to see if it helps.

• First, we have xm → x =⇒ f (xm) → f (x).

If we had a sequence xm → x

RN

x

xm

=⇒

Then we’d know f (xm) → f (x).

RM

f (x)

f (xm)

• We want to show that ∀x ∈ RN ∀ε > 0 ∃δ > 0 s.t. z ∈ Bδ(x) =⇒ f (z) ∈ Bε( f (x)).

• A great starting point is to construct a sequence in RN that converges to x, because the premise here
is a statement about sequences. I don’t see an obvious way to do this directly, but if we think about
doing contradiction, we can negate the previous bullet point:

∃x ∈ RN ∃ε > 0 s.t. ∀δ > 0 ∃z ∈ Bδ(x) and f (z) /∈ Bε( f (x))

Note that x and ε here are fixed, and that we don’t get to choose z—all we know is one such a z exists.
However, δ is a free parameter here, because this must be true for any δ.

• If we pick δ = 1/m then we can construct a sequence xm → x s.t. f (xm) /∈ Bε( f (x)):

For m = 1 ∃x1 ∈ B1(x) s.t. f (x1) /∈ Bε( f (x))

RN

x
x1

RM

ε

f (x)

f (x1)

12
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For m = 2 ∃x2 ∈ B1/2(x) s.t. f (x2) /∈ Bε( f (x))

RN

x
x1

x2

RM

ε

f (x)

f (x1)
f (x2)

∀m ∃xm ∈ B1/m(x) s.t. f (xm) /∈ Bε( f (x))

RN

x
x1

x2

xm

RM

ε

f (x)

f (x1)
f (x2)

f (xm)

We can see as xm becomes increasingly closer to x, f (xm) is always at least ε away from f (x). In
other words, we have constructed a sequence xm → x were f (xm)��→ f (x), contradiction.

4. Intermediate Value Theorem (IVT)

Theorem 12 (Intermediate Value Theorem (IVT)). If f : [a, b] → R is continuous in [a, b] then

∀L : f (a) < L < f (b) ∃c ∈ [a, b] s.t. f (c) = L

L = f (c)
L

c

Continuous

L �∃c : f (c) = L

Not Continuous

Figure 2: Intermediate Value Theorem (IVT)

13



Math Camp Aug 15, 2023 – Lecture II 5. Fun Remarks

Proof. Take any L ∈ ( f (a), f (b)) and consider

A = {x ∈ [a, b] : f (x) ≤ L}

A is bounded so the sup exists; let c = sup A. For εm = 1/m take xm ∈ (c − εm, c] ∩ A, so xm → c and
f (xm) → f (c) (by continuity). Since A is closed and xm ∈ A, c ∈ A and f (c) ≤ L. If f (c) = L we are done; if
f (c) < L then consider

B = {x ∈ [c, b] : f (x) ≥ L}

Note B = (c, b] because f (c) < L, so c /∈ B, and c is an upper bound for A: For every x ∈ (c, b] it cannot be
f (x) < L because then x ∈ A and x < c, contradiction, so f (c) ≥ L. However, this is another contradiction
because the upper set of a continuous function is closed, and B = (c, b] is not closed. Hence f (c) = L. (NB: If
you take inf(B) you can follow the same logic to get f (c) > L; basically we’re showing there’s a discontinuity
at c, which cannot happen for a continuous function.) (NB: Another subtlety here is the case when c = b,
but then f (b) = f (c) < L < f (b) contradiction.)

5. Fun Remarks

You can have a fun relaxing minute listening to Tom Lehrer’s There’s a Delta for Every Epsilon :

There’s a delta for every epsilon,
It’s a fact that you can always count upon.
There’s a delta for every epsilon
And now and again,
There’s also an N.

But one condition I must give:
The epsilon must be positive
A lonely life all the others live,
In no theorem
A delta for them.

How sad, how cruel, how tragic,
How pitiful, and other adjec-
Tives that I might mention.
The matter merits our attention.
If an epsilon is a hero,
Just because it is greater than zero,
It must be mighty discouragin’
To lie to the left of the origin.

This rank discrimination is not for us,
We must fight for an enlightened calculus,
Where epsilons all, both minus and plus,
Have deltas
To call their own.

14

https://www.youtube.com/watch?v=zxFCQplZgKI#t=2m35s


cauchy, 6
continuous, 8
converges, 2

decreasing, 1
diverges, 1

increasing, 1

monotonic, 1

subsequence, 1
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