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1. Proofs and Logic

Math is a language: It should be possible to express anything you want in math, as you would in English or
any other language. However, there are many things that are easier to express in math (just like many things
are easier to express in English). One thing that is easier to do in math are proofs.

1.1. If P then Q. What does it mean?

• Logically, we say P =⇒ Q, that is, “P implies Q” or “P therefore Q.”

P is sufficient for Q

Q is necessary for P

P =⇒ Q

• Graphically we say P ⊆ Q

P

Q
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Naturally P =⇒ Q ̸= Q =⇒ P; however, we have that the contrapositive is equivalent, that is,

P =⇒ Q ≡ ¬Q =⇒ ¬P

That is to say, if not Q, then not P. Logically, if P =⇒ Q and we do not have Q, then we cannot have P
(otherwise we’d have Q). Graphically, if we are not in Q and P ⊆ Q, then we cannot be in P.

1.2. Proof Strategies.

1. Direct: Show P =⇒ Q. That is, find some path of logical statements that leads from P to Q.

Example 1. Show m ∈ Z even =⇒ p · m even ∀p ∈ Z. m is even ⇐⇒ ∃q ∈ Z s.t. m = 2q, hence
pm = 2pq. Last, pq ∈ Z, so pm equals an integer times 2, implying pm is even.

2. Contrapositive: Show ¬Q =⇒ ¬P. This is very similar to a direct proof, but often it is useful to rephrase
what we want to show in its contrapositive form. Further, texts will, at times, proceed by contrapositive
without making explicit mention that is what they are doing.

3. Contradiction: If ¬P leads to Q and Q is false, then P must be true.

Example 2. One of the most famous proofs by contradiction is that
√

2 /∈ Q. Suppose the negation of
that statement is true, that is,

√
2 ∈ Q. Recall

Q = {p/q : (p, q) ∈ Z×Z \ {0}}

Hence ∃p, q co-prime s.t.
√

2 = p/q. (NB: If p, q are not co-prime then the fraction can be simplified
until we find p, q co-prime.1) Note

√
2 =

p
q

⇐⇒ −2 =
p2

q2 or 2 =
p2

q2

WLOG2 take the positive root, so

2 =
p2

q2 =⇒ 2q2 = p2 =⇒ p2 is even =⇒ p is even =⇒ ∃m ∈ Z : p = 2m

Thus
2q2 = (2m)2 ⇐⇒ q2 = 2m2 =⇒ q2 is even =⇒ q is even =⇒ ∃n ∈ Z : q = 2n

Hence p, q are both divisible by 2 and are not co-primes, contradiction.

There is a very slight nuance with the proof above involving special cases. Can you spot it?3

4. Induction: We want to say something about statements that can be indexed by the natural numbers.
Using induction we do that in two steps:

a) Prove the base step, P(1), is true.

b) Prove the inductive step, P(k) =⇒ P(k + 1), is true (i.e. assume P(k) is true and show P(k + 1)).

1Let
√

2 = p̃/q̃ for any p̃, q̃ and let m be the product of all their co-factors; p ≡ p̃/m, q ≡ q̃/m gives
√

2 = p/q with p, q co-prime.
2WLOG means “Without Loss of Generality.” This is occasionally used in proofs in order to shorten them: This means that even
through there is more than one case to consider, proving any of them would follow identical steps to the one you are about to show;
hence despite focusing on a specific case, the proof has not lost its general applicability (its generality).
3I believe the common definition of co-prime integers does not preclude both integers from being equal to 1, in which case my
subsequent claims about p, q being even do not hold. We can readily see that p = 1 is an issue since 2 = 1/q2 ≤ 1 is already a
contradiction; however, a more subtle case is when q = 1, which which case 2 = p2 , contradiction since p ∈ Z.
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Example 3. We want to show the sum of the first k odd numbers is k2, that is:

k

∑
i=1

2i − 1 = k2

For the base step we can see 1 = 12. For the inductive step, assume P(k) is true and show P(k + 1):

k+1

∑
i=1

2i − 1 =
k

∑
i=1

2i − 1 + 2(k + 1)− 1 !
= k2 + 2k + 1 = (k + 1)2

where
!
= is true by the inductive step assumption (i.e. P(k) means ∑

k
i=1 2i − 1 = k2).

In case you are curious, here’s a proof with a tricky base step. Straight from Wikipedia :

Example 4. Prove that ∀k ≥ 12 ∃m, n ∈ Z+ (non-negative integers) s.t. 4m + 5n = k.

a) Base: k = 12 then m = 3, n = 0.

b) Induction: Assume ∃mk, nk s.t. 4mk + 5nk = k and show ∃mk+1, nk+1 s.t. 4mk+1 + 5nk+1 = k + 1.

k + 1 = 4mk + 5nk + 1 = 4mk + 5nk + 5 − 4 = 4(mk − 1) + 5(nk + 1)

Hence mk+1 = mk − 1, nk+1 = nk + 1 if mk > 0. If mk = 0, then nk ≥ 3, so

k + 1 = 4mk + 5nk + 1 = 4mk + 5nk + 16 − 15 = 4(mk + 4) + 5(nk − 3)

and mk+1 = mk + 4, nk+1 = nk − 3.

Note for several k < 12 this cannot be true (e.g. k = 3).

2. Functions

We will not delve into set theory. Intuitively, we can think of a set as a collection of (unique) elements, and
we can think of functions as rules that associate every element in one set with an element in another set.4

Definition 1. f is a function with domain X mapping to a co-domain Y if for every element x ∈ X there
exists a y ∈ Y s.t. f (x) = y. We write f : X → Y, and for any S ⊆ X

f (S) = {y ∈ Y : ∃x ∈ S s.t. f (x) = y}

is the image of S under f . f (X), the image of the domain, is called the range: The set of points in Y at least
some element of X is mapped into.

Definition 2. If f : X → Y then for any S ⊆ Y the inverse image of S is

f−1(S) = {x ∈ X : ∃y ∈ Y s.t. f (x) = y}

Remark 1. The inverse image is distinct from the concept of an inverse function. A function is invertible if
∃g s.t. f (x) = y ⇐⇒ g(y) = x; this is also denoted g = f−1 because the image of the inverse is the inverse
image. However, functions needn’t be invertible, while the inverse image is always defined.

4Formally, we can define a function f from X to Y as a binary relation s.t. f ⊆ (X × Y) and for each element x ∈ X there is one (and
only one) element y ∈ Y s.t. (x, y) ∈ f (though for each element in y there may be some z ̸= x s.t. (z, y) ∈ f ). Chapter 1 of Ok has a
rigorous treatment of functions following an introduction to set theory.
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In general it need not be the case that f (X) = Y, since some points of Y might not be mapped into. Further,
a single point in Y might be the mapping of several points in X. We have some special interest in functions
for which that is not the case.

Definition 3. A function f : X → Y is injective (or one-to-one) if f (x) = f (y) =⇒ x = y.

Definition 4. f is surjective (or onto) if f (X) = Y.

Definition 5. f is bijective or a bijection if it is injective and surjective.

3. Countability

Definition 6. A set X is countably infinite or countable if ∃ a bijection from X to the natural numbers N.

We make a distinction between finite and countable (note finite sets are not countable by the above
definitions). Some examples of countably infinite sets:

1. N is countable since a bijection from N → N is given by the identity f (x) = x.

2. Z is countable. This is slightly more complicated but we can enumerate all the integers:

{0,−1, 1,−2, 2, . . .}

This is the enumeration given by the bijection f (x) = 2|x| − 1(x < 0).

Is Q countable? Is R? The answers are yes and no, respectively, but the arguments are more nuanced.

Claim 1. Q is countable.

Proof. Note X is countable if ∃ an injection f : X → N. Suppose there exists such an injection, so f (X) ⊆ N.
Denote the elements of this set {n1, n2, n3, . . .} and note ∃ unique x ∈ X for each element s.t. f (xni ) = ni
for each i ∈ N. Define g(xni ) = i and we have g : X → N is a bijection, so X is countable by definition.

An immediate corollary is that if X is countable and S ⊆ X then S is countable (or finite), as the bijection
defined over X would still be an injection when restricted to S. Now to show Q is countable, consider
g(p, q) = p/q defined over the set Z×Z \ {0}. We can see Q = g(Z×Z \ {0}), and g−1(Q) ⊆ Z×Z. If we
can show Z×Z is countable, it should follow Q is countable.

Take any sets P, Q countable; we can enumerate their elements as

P = {p1, p2, . . .} and Q = {q1, q2, . . .}

and we can enumerate their Cartesian product as

Q × P p1 p2 p3 p4 . . .

q1 1 3 6 10

q2 2 5 9

q3 4 8
. . .

q4 7
. . .

...

4



Math Camp Aug 14, 2023 – Lecture I 4. Metric Spaces

meaning P × Q is countable. The bijection that corresponds to that table is

f (pi , q j) =
(i + j − 1)(i + j)

2
− (i − 1)

Claim 2. R is not countable.

Cantor’s Diagonal Argument. We proceed by contradiction.5 SupposeR is countable, so we can enumerate
its elements as R = {r1, r2, . . .}. The decimal representation of each element in R is then

r1 = N1.x11x12x13 . . .

r2 = N2.x21x22x23 . . .

r3 = N3.x31x32x33 . . .
...

where Ni ∈ Z and xi j ∈ {0, . . . , 9}. Take y = N.y1 y2 y3 . . . s.t. yi ̸= xii and y doesn’t have an alternative
representation (so y doesn’t end in all 0s or all 9s; but we can do this, since for any xii we have 7 numbers
to choose from other than 0, 9, or xii). y ∈ R but y ̸= r j for any j, contradiction. (Cantor actually did this
proof for just the real interval [0, 1]; can you see why that’s sufficient?)

Why doesn’t this proof work for Q?6

Remark 2. The finite Cartesian product of countable sets was countable, which we can show by induction.
The claim is that if P is countable, then PN is also countable. This is another example of induction where
the base step cannot be N = 1 (since this “base” step is actually given by the premise of the problem).

a) Base: P × P is countable. We proved the Cartesian product of two countable sets is countables.

b) Induction: If PN is countable then PN+1 = PN × P is the product of two countable sets, which, again, we
already showed is countable (the induction assumption gets PN is countable and the problem statement
gives that P itself is countable).

In this case, the base was N = 2.

4. Metric Spaces

Definition 7. A function d : X × X → R+ with X ̸= ∅ is called a distance or metric on X if ∀x, y, z ∈ X

1. d(x, y) = 0 ⇐⇒ x = y,

2. d(x, y) = d(y, x) (it is symmetric), and

3. d(x, y) ≤ d(x, z) + d(z, y) (the triangle inequality holds).

5Cantor’s diagonalization proof has been called one of the most beautiful proofs in mathematics.
6If we try to use that same proof to show Q is not countable there is actually no guarantee that the number y we construct will be an
element of Q. We have already established there are numbers that are not in Q, whereas R is actually defined to be complete (this is a
formal term, but intuitively it means that R has all the numbers).

5
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Note the triangle inequality says that tou cannot “shorten” the distance between two points if you first “stop
by” a third point. It might be equal (if z happens to be in the “path” from x to y, for some definition of “path”)
but it can never be strictly smaller. Last, note we defined d to be ≥ 0 for all x, y in the space.

Definition 8. A metric space (X, d) is a non-empty set X with a metric d defined on X.

Some examples of metric spaces:

1. For any X ̸= ∅, one way to metricize the space is the discrete metric

d(x, y) =

{
1 x ̸= y

0 x = y

2. RN with the euclidean distance,

d(x, y) = ∥x − y∥ =

√√√√ N

∑
i=1

(xi − yi)2

3. More generally, consider for 1 ≤ p ≤ ∞ the distance on RN for N ∈ N

dp(x, y) =


(

N

∑
i=1

|xi − yi|p
)1/p

1 ≤ p < ∞
max

i=1,...,N
|xi − yi| p = ∞

(RN , dp) is a metric space, often called a Lp-space.7 d2 is the euclidean distance, but it turns out that,
while geometrically intuitive, it’s not necessary to preserve a lot of the properties we care about.

Figure 1: Unit “circle” in R2 under different dp metrics

d1

d2

d4

d8

d∞

x1

x2

In the figure above we can get some intuition for why we defined the d∞ metric as the max; graphically
on R2, we can see this is the natural extension of dp as p → ∞.

7NB: I have encountered the terminology Lp to refer to both the metric dp as well as the space (RN , dp).
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While it can be useful to develop an abstract understanding of metric spaces, for the purposes of this class
it’s fine if you think of metric spaces as Euclidean space (i.e. (RN , d2), which I will simply denote as RN ).

Remark 3. What is the intuition for dp metrics?

• d2 is the Euclidean distance, the “straight line” between two points.

• d∞ is the largest distance.

• d1 is the sum of the absolute differences.

You don’t really have to worry too much about dp in this class, and it’s probably unlikely you’ll see them
outside of math class. It does bridge the gap between d1 and d∞, and it can generate curvatures that might
be of interest in some applications.

5. Introduction to Topology

Definition 9. Let X be a metric space. For each x ∈ X we define the ε-neighborhood of x as

Nε,X(x) = {y ∈ X : d(x, y) < ε}

On R, we can see this is just the interval of length 2ε centered around x; on R2 this is a circle, on R3 it is a
ball, and so on. Neighborhoods are never empty, since at least x ∈ Nε,X(x).

Remark 4. In Euclidean space an ε-neighborhood is called an ε-ball. Henceforth we will use ε-balls in
place of neighborhoods, denoting the ε-ball centered around a point x as Bε(x):

Bε(x) = {y ∈ X : ∥x − y∥ < ε}

However, know the results we discuss hold more generally for metric spaces and neighborhoods.

Definition 10. Let S ⊆ RN ; S is open in RN if ∀s ∈ S ∃ε > 0 s.t. Bε(x) ⊆ S.

Definition 11. Let S ⊆ RN ; S is closed if its complement SC = RN \ S is open.

Some examples of open and closed sets:8

1. The interval (0, 1) in R is open. Take any 0 < x < 1 and let

ε ≡ min {x − 0.5(0 + x), 0.5(1 − x))}

Note Bε(x) = (x −ε, x +ε), so 0 < 0.5x ≤ x −ε < x < x +ε ≤ 0.5(1 + x) < 1, means Bε(x) ⊆ (0, 1).

2. The interval [0, 1] is closed in R. (−∞, 0) is open. For any x < 0, take ε = |x|/2 and we have −∞ <

x − ε < x < x + ε < 0. Similarly, for x > 1 take ε = (x + 1)/2 and we get 1 < x − ε < x < x + ε < ∞.
Since its complement is open, [0, 1] is closed.

3. The interval [0, 1) is open in R+. This is a bit less obvious. [0, 1) is not open in R because if we take
x = 0, any ε > 0 gives x −ε < 0, and thus the ε-neighborhood is not in [0, 1). However, in R+ there are
no points < 0, so there is nothing to contradict [0, 1) being open.

8Note the definition of openness uses ⊆ instead of ⊂. This can be an important distinction, and gets to the fact openness and closeness
are not intrinsic properties of subsets: They are tied to the set they are defined in as well as the metric that has been defined on the
space. Similarly, a set is defined as closed if its complement in a given space is open. All this might make you suspect that sets can be
both open or closed if we simply change what they are open or closed relative to, and you would be right!
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What about [0, 1) in R? Is it open or closed?9

Claim 3. The empty set ∅ and the entire space RN are both open and closed.

Proof. The complement of the empty set is RN \∅ = RN , the entire space itself. Take any x ∈ RN and any
finite ε > 0; by definition Bε(x) ⊆ RN , so RN is open, and ∅ is closed.

The empty set is open by vacuity: Pick ε > 0 and any x ∈ ∅; we have Bε(x) = ∅ ⊆ ∅. Albeit correct, I’ll
admit this is not the most intuitive argument. By contradiction, if ∅ is not open ∃x ∈ ∅,ε > 0, y ∈ Bε(x)
s.t. y /∈ ∅. However, ∅ is empty, so x ∈ ∅ is a contradiction. Since the empty set is open, RN is closed,
completing the proof.

Can you prove that ε-balls are open?10

Claim 4. • Any union of open sets is open.

• A finite intersection of open sets is open.

• Any intersection of closed sets is closed.

• A finite union of closed sets is closed.

To see why we require a finite intersection for open sets, consider In = (−1/n, 1/n) in R. Each set is open,
but

⋂∞
n=1 In = {0}, and singletons are closed in R, so the infinite intersection is closed. Similarly, we can

see why we need a finite union for closed sets:
⋃

x∈(0,1){x} = (0, 1); we just discussed how singletons are
closed, but the infinite union can be open.

Definition 12. 1. The union of every open set O s.t. O ⊆ S is the interior of S. We denote it as int(S).

2. The intersection of every closed set K s.t. S ⊆ K is the closure of S. We denote it as cl(S).

3. The boundary of S is the set difference between the closure and the interior, bd(S) = cl(S) \ int(S).

Claim 5. An open set is its own interior. A closed set is its own closure.

The interior is always open, since arbitrary unions of open sets are open; similarly, the closure is always
closed, since arbitrary intersections of closed sets are closed.

Definition 13. Let S ⊆ RN ; S is bounded if ∃ε > 0, s ∈ S s.t. S ⊆ Bε(x).

Definition 14. Let S ⊆ R; a is an upper bound for S if ∀s ∈ S we have s ≤ a. The least upper bound is called
the supremum, denoted sup S.

Definition 15. Let S ⊆ R; b is an lower bound for S if ∀s ∈ S we have s ≥ b. The greatest lower bound is
called the infimum, denoted inf S.

Claim 6. Let S ⊆ R. a = sup S iff a is an upper bound s.t. ∀c < a ∃s ∈ S s.t. c < s; similarly, b = inf S iff b is
a lower bound s.t. ∀c > b ∃s ∈ S s.t. c > s.

9It’s actually neither.
10Hint: You can use the triangle inequality.
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Remark 5. In class I got myself twisted with this proof, and it’s because I mis-remembered the premise! The
characterization is as stated above, but mid-proof I hallucinated that c ∈ S was also a requirement, which
would make the equivalency false. The proof I gave in class is actually a more complicated version of the
one below that still relied on c being arbitrary and not necessarily inside the set. The below is simpler!

Proof. Let a = sup S and take any c ∈ S s.t. c < a. By contradiction suppose ∀s ∈ S we have s ≤ c < a,
so c is an upper bound smaller than a, which contradicts the definition of the sup. Now let a be an upper
bound s.t. for any c ∈ S with c < a there exists some s ∈ S s.t. c < s. By contradiction, if a ̸= sup S then by
definition of the sup it must be that sup(S) < a; however, by premise we now have ∃s ∈ S s.t. sup S < s,
which contradicts the definition of the sup. Hence a = sup S.

The arguments for the inf are entirely analogous.

Remark 6. For any S ⊆ R that is bounded above, sup S ∈ R; similarly, for any S ⊆ R that is bounded below,
inf S ∈ R. This is not obvious as, for example, the set Q∩ (−π , π) does not have a sup or an inf in Q. The
fact this is true in R is a consequence of a property called “completeness.” We will not discuss it in depth in
this class, but intuitively it means that R has no “holes” (unlike, say, Q). The real line R is actually constructed
to have this property, and you may encounter references to the completeness axiom.

Definition 16 (Archimedean Property). ∀ε > 0 ∃N ∈ N s.t. 0 < 1/N < ε.

Claim 7. Q is dense in R. In this context, ∀a, b ∈ R s.t. a < b ∃q ∈ Q s.t. a < q < b.

Proof. Density is defined as a more general property of metric spaces, but in the context of the real line the
above is a good characterization: You can always find a rational number between any two real numbers.
Since b − a > 0, the Archimedean Property gives ∃n ∈ N s.t. 0 < 1/n < (b − a), or 1 < n(b − a). Take any
integer m ∈ Z s.t. na < m < nb (at least one such integer exists since the difference between na and nb is
greater than 1). Since n ∈ N is strictly positive, dividing through preserves the inequalities, and

a < m/n < b

Let q ≡ m/n ∈ Q and we have completed the proof.

6. Limits

Definition 17. s ∈ RN is a limit point of a set S if ∀ε > 0 there is some x ∈ S s.t. s ̸= x and d(s, x) < ε.

Intuitively, it’s any point in S that can be arbitrarily close to other points in S.

Definition 18. Let f : S → R and s be a limit point of S. We say L is the limit of f (x) as x approaches s,

lim
x→s

f (x) = L

if ∀ε > 0 ∃δ > 0 s.t.
d(x, a) < δ =⇒ | f (x)− L| < ε

Remark 7. Why s ̸= x? It boils down to an earlier requirement that set elements must be unique, and
thus a limit point is a point that can be “approached”; if the only element that approaches x is s = x then s
cannot be approached; it would just be f evaluated at x, f (x), rather than the “limit” we define here.

9
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Definition 19. Let S ⊆ R, f : S → R, and s a limit point of S. The limit from above or from the right is

lim
x→s+

f (x) = L+

if ∀ε > 0 ∃δ > 0 s.t.
s < x < s + δ =⇒ | f (x)− L+| < ε

Similarly for the limit from below (or from the left):

lim
x→s−

f (x) = L−

We have that limx→s f (x) exists if L+ = L− = L.

7. Fun Remarks

• Did you know that, mathematically, you can take a ball, split it in five, move the pieces around, and put
them back together into two identical balls? This is called the Banach–Tarski paradox, and is one of
many fun paradoxes that exist in set theory. Vsauce (a YouTuber) has a really nice video on it .

• Speaking of mind-bending logic, one of my favorite episodes from mathematics is what lead to Gödel’s
incompleteness theorems . By the early 1900s, several mathematical paradoxes had been found, which
called into question the foundational consistency of mathematics. Banach–Tarski, albeit fun, is a rather
esoteric paradox. An easier one is Russell’s paradox : Let R be the set of all sets that do not contain
themselves. If R ∈ R then R /∈ R, and if R /∈ R then R ∈ R!

Famous mathemagician David Hilbert sought to solve the problem: He dreamed of a world where
the entirety of mathematical knowledge could be derived following a core set of precise rules and
statements. Concretely, he was the leading proponent of so-called axiomatic theory, where all truths
about mathematics could be proven by building on a given set of axioms. In the 1930s, however, Kurt
Gödel showed this was not possible, and any consistent axiomatic system would contain statements
that could not be proven within the system. Basically, mathematics is screwed.

Or is it? While Hilbert’s dream, like Fantine’s, cannot be, this is a storm mathematics has apparently
been able to weather. In other words, while Gödel showed it was not possible to formalize all of
mathematics, large portions of it can be. This means Gödel’s theorems have no practical implications
for most applications of mathematics (such as anything we’ll discuss in this class).

• Speaking of favorites, one of my favorite short stories is Jorge Luis Borges’ La Biblioteca de Babel (The
Library of Babel), about a universe that is a library whose books, of finite length, contain every possible
permutation of 25 characters. Naturally the set of the library’s books cannot be countable; however,
much like the story’s narrator, I am a true believer that the library is infinite nonetheless.

• Sets that are both open and closed are called “clopen.” When we defined this during my math class,
someone straight up asked the prof. if he was screwing with us, because, seriously, how is “clopen” an
actual math term?
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https://en.wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorems
https://en.wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorems
https://en.wikipedia.org/wiki/Russell%27s_paradox


ε-ball, 7
ε-neighborhood, 7

base step, 2
bijective, 4
boundary, 8
bounded, 8

closed, 7
closure, 8
co-domain, 3
contradiction, 2
contrapositive, 2
countable, 4
countably infinite, 4

dense, 9
direct, 2
distance, 5
domain, 3

function, 3

image, 3
induction, 2
inductive step, 2
infimum, 8
injective, 4
interior, 8
inverse image, 3

limit, 9
limit point, 9
lower bound, 8

metric, 5
metric space, 6

open, 7

range, 3

supremum, 8
surjective, 4

upper bound, 8
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