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Suggested Solutions 3

1. Take a collection of functions with fi : Ω → RN , Ω ⊆ RM, i ∈ N. The collection { fi} defines a sequence
of funtions, and for each x ∈ Ω we have a possibly different sequence { fi(x)} in RN .

Let { fi} be a sequence of functions, with fi : Ω → RN and Ω ⊆ RM. We say that { fi} point-wise
convrges to f : Ω0 → RN if x ∈ Ω0 =⇒ fi(x) → f (x).

Let { fi} be a sequence of functions, with fi : Ω → RN and Ω ⊆ RM. We say that { fi} uniformly
convrges to f : Ω0 → RN if ∀ε > 0 ∃I0(ε) s.t. for i > I0(ε) we have ∥ fi(x)− f (x)∥ < ε.

a) Let fi(x) = x/i and f (x) = 0. Check that fi → f point-wise.

Solution. Pick an arbitrary x and ε > 0. We have the sequence xm = x/m, and for N > ∥x∥/ε we
have that

∥x/m∥ < ∥x∥/N < ε

whenever m > N. Hence for any given x, fi(x) → f (x).

b) Show fi defined above does not converge uniformly to f .

Solution. Crucially, the number I0(ε) we choose in this case cannot depend on x, only on ε. Suppose
that it does converge uniformly, then for any ε > 0 we find I0(ε) s.t. i > I0(ε) gives

∥ fi(x)− f (x)∥ < ε ⇐⇒ 1
i
∥x∥ < ε ⇐⇒ ∥x∥ < εi

However, for fixed ε and I0(ε), take any given i > I0(ε), for instance i = I0(ε) + 1, and x =
√

Mεi + 1
(with 1 a vector of ones and M the dimension of RM , since we said Ω ⊆ RM) will violate the equation
above, a contradiction.

c) Show uniform convergence implies point-wise convergence.

Solution. This follows directly from the definition. Pick an x′ ∈ Ω0; fi → f point-wise if the sequence
x′i = fi(x′) → f (x). This is true if for every ε > 0 there exists some I s.t. i > I gives∥∥ fi(x′)− f (x′)

∥∥ < ε

If fi → f uniformly, then we know that I0(ε) exists s.t.

∥ fi(x)− f (x)∥ < ε

for every x ∈ Ω0, which means it must also be true of x′. Let I = I0(ε) and we are done.

2. Let A ⊆ RN be a convex set. f : A → RN is quasiconcave if for any x, y ∈ A andα ∈ [0, 1] we have

f (αx + (1 −α)y) ≥ min{ f (x), f (y)}

and strictly quasiconcave if the above holds strictly. Show if f is quasiconcave then argmaxx∈A f (x) is a
convex set (recall the empty set is convex by vacuity). Further show that if f is strictly quasiconcave
then argmaxx∈A f (x) is a singleton or empty.
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Solution. We have that for any pair x, y ∈ A, andα ∈ [0, 1]

f (αx + (1 −α)y) ≥ min{ f (x), f (y)}

Furthermore,
argmax

x∈A
f (x) = {x ∈ A : f (x) ≥ f (y) ∀y ∈ A}

We want to show that for any two points, x∗, y∗ ∈ argmaxx∈A f (x), the following holds:

αx∗ + (1 −α)y∗ ∈ argmax
x∈A

f (x)

Note that since A is convex and x∗, y∗ ∈ A, we haveαx∗ + (1 −α)y∗ ∈ A.

If there is no maximum the above is true by vacuity: For any two points in the empty set, their combina-
tion is also in the empty set. This statement is true by vacuity, but perhaps the contrapositive makes it
more clear: If the convex combination of any two points is not on the empty set for someα ∈ [0, 1] (true
because there are no points in the empty set), then the two points are not in the set (also true because
there are no points in the empty set).

So let us consider the non-trivial case. x∗, y∗ ∈ argmax gives that f (x∗) ≥ f (x) ∀x ∈ A and f (y∗) ≥
f (x) ∀x ∈ A. Since f is quasiconcave,

f (αx∗ + (1 −α)y∗) ≥ min{ f (x∗), f (y∗)} ≥ f (x) ∀x ∈ A

which is exactly what we wanted to show, so argmax is a convex set. If we have strict quasiconcavity
and the maximum does not exist, then the argmax is empty. So, again, let us consider the non-trivial
case: Suppose that argmax is not a singleton. We know that it must be convex, so for x∗, y∗ ∈ argmax
with x∗ ̸= y∗ we have

f (αx∗ + (1 −α)y∗) ∈ argmax
x∈A

f (x)

However, by strict quasiconcavity we also have

f (αx∗ + (1 −α)y∗) > min{ f (x∗), f (y∗)} ≥ f (x) ∀x ∈ A

Since A is convex and x∗, y∗ ∈ A, we have thatαx∗ + (1 −α)y∗ ∈ A, and thus

f (αx∗ + (1 −α)y∗) > f (αx∗ + (1 −α)y∗)

a contradiction. So if the argmax is not empty, it is a singleton.

3. Consider a continuous function f : RN → R. Show

a) If f is differentiable and x∗ ∈ RN is a local maximizer of f then ∇ f (x∗) = 0.

Solution. Suppose x∗ a local maximizer of f . Then ∃ε > 0 s.t.

x ∈ Bε(x∗) =⇒ f (x∗) ≥ f (x)

Since f is differentiable, we know that
∂

x j
f (x∗) exists for each j. Hence

∂

∂x j
f (x∗) = lim

t→0

f (x∗ + te j)− f (x∗)
t

= lim
t→0+

f (x∗ + te j)− f (x∗)
t

= lim
t→0−

f (x∗ + te j)− f (x∗)
t

where {e j} are the standard basis for RN . Further, for t < ε, we have that
∥∥x∗ + te j − x∗

∥∥ = t < ε.
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Hence x∗ + te j ∈ Bε(x) and

(1)

f (x∗ + te j) ≤ f (x∗) =⇒ f (x∗ + te j)− f (x∗) ≤ 0

t ≥ 0 =⇒
f (x∗ + te j)− f (x∗)

t
≤ 0

t ≤ 0 =⇒
f (x∗ + te j)− f (x∗)

t
≥ 0

This means that as t → 0+ or t → 0− we get

∂

∂x j
f (x∗) = limt→0+

f (x∗ + te j)− f (x∗)
t

≤ 0

∂

∂x j
f (x∗) = limt→0−

f (x∗ + te j)− f (x∗)
t

≥ 0

=⇒ ∂

∂x j
f (x∗) = 0

b) If f is twice continuously differentiable and x∗ ∈ RN is s.t. ∇ f (x∗) = 0, then if x∗ is a local maximizer
the symmetric N × N Hessian D2 f (x∗) is negative semidefinite. Extra credit: If D2 f (x∗) is negative
definite then x∗ is a strict local maximizer. (Hint: I used a Taylor expansion without the explicit
remainder formula. For the extra-credit, I additionally leveraged the fact a matrix is ND iff it has all
strictly negative eigenvalues, but there may be a way to do it without that.)

Solution. Pick any vector v and note x∗ +ε · v/ ∥v∥ is in the ε-neighborhood of x∗. Alternatively, any
vector z ∈ Bε(x∗) can be expressed in this way. Now consider for a given z the 2nd-order Taylor
expansion of g(ε) = f (x∗ +εv/ ∥v∥) around ε = 0.

g(ε) = g(0) + g′(0)ε+
1
2

g′′(0)ε2 + h(ε)ε2

for some h(ε) → 0 as ε → 0. By the chain rule,

g′(0) =
vT

∥v∥Dx f (x∗) and g′′(0) =
vT

∥v∥Dx f (x∗)
v

∥v∥

However, from the FOC we know that Dx f (x∗) = 0. Therefore we find

f (z)− f (x∗) =
1
2

vT

∥v∥Dx f (x∗)
v

∥v∥ε
2 + h(ε)ε2

for any z ∈ Bε(x).

i) For the first portion of the problem, we want to show that for an arbitrary vector v we have
vTDx f (x∗)v ≤ 0 given x∗ is a local maximizer. A local maximizer means there is some neighbor-
hood δ s.t. z ∈ Bδ(x∗) =⇒ f (z) ≤ f (x∗). Fix an arbitrary non-zero vector v and for ε < δ we
have z = x∗ +εv/ ∥v∥ ∈ Bε(x∗) ⊂ Bδ(x∗). Therefore for arbitrary v and small-enough ε we find

0 ≥ f (z)− f (x∗) =
1
2

vT

∥v∥Dx f (x∗)
v

∥v∥ε
2 + h(ε)ε2

0 ≥vTDx f (x∗)v + 2 ∥v∥2 h(ε)

where the inequalities did not flip when we multiplied by 2, ∥v∥2 , 1/ε2 as these are all > 0. Finally
take ε → 0 so 2 ∥v∥2 h(ε) → 0. Since v is fixed the first term is constant and we have

0 ≥ vTDx f (x∗)v
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(i.e. sums preserve limits), which is what we wanted to show.

ii) For the second portion of the problem, if f is twice continuously differentiable then D2 f (x∗) is
symmetric and can be decomposed into CΛCT for Λ a diagonal matrix of eigenvalues and C an
orthonormal matrix of eigenvectors (i.e. CCT = CTC = I). The entries of Λ are all negative iff
D2 f (x∗) is negative definite. Hence for any non-zero v we have

vTDx f (x∗)v = vTCΛCTv = uTΛu = ∑
i
λiu2

i ≤ λ∑
i

u2
i = λvTCCTv = λvTv

for 0 > λ ≡ maxi λi and u = CTv. Note we have ≤ because λi < 0. Now

f (z)− f (x∗) =
1
2

vT

∥v∥Dx f (x∗)
v

∥v∥ε
2 + h(ε)ε2

≤ λ

2
vTv

∥v∥2ε
2 + h(ε)ε2

=

(
λ

2
+ h(ε)

)
ε2

since vTv = ∥v∥2 by definition. Finally, h(ε) → 0 =⇒ ∃ε > 0 small enough s.t. h(ε) < −λ/2
(again, λ < 0), or simply h(ε) + λ/2 < 0. Since ε2 > 0 we have

f (z)− f (x∗) < 0

for all z ∈ Bε(x∗), showing x∗ is a strict local maximum.

c) If f is concave then f (x + z) ≤ f (x) + zTD f (x) for any x, z.

Solution. Take x, z s.t. x and x + z are in the domain of f . Let g(α) ≡ f (x +αz) and, by the chain rule,

g′(0) = zTDx f (x)

(Note x, x + z in the domain andα ∈ [0, 1] imply that x + zα in the domain since it’s a convex set.)
Now take a second order Taylor expansion:

g(α) = g(0) + g′(0)α +
1
2

g′′(c)α2

for some c ∈ (0,α). But

g′′(c)α2 = zTD2 f (x + cz)zα2 ≤ 0

since f concave =⇒ D2 f is negative semi-definite (andα2 ≥ 0). Finally,

f (x +αz) ≤ f (x) + zTDx f (x)α

Setα = 1 and we get the result.

Remark 1. If, like me, you tried using the definitions, here’s another solution, using limits:

g′(0) = lim
α→0

g(α)− g(0)
α

= lim
α→0

f (x +αz)− f (x)
α

Therefore, if we can show that

f (x + z) ≤ f (x +αz)− f (x)
α

+ f (x)

then we have our result (the inequality is preserved in the limit). Note the above holds ∀α ≥ 0 if

α f (x + z) ≤ f (x +αz)− f (x) +α f (x)
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f (x +αz ±αx) ≥ α f (x + z) + (1 −α) f (x)

f (α(x + z) + (1 −α)x) ≥ α f (x + z) + (1 −α) f (x)

This the last inequality is true by the definition of concavity of x. Note there is one subtlety here in
that we haven’t said anything aboutα < 0. In this case, if f is differentiable at x then g is differentiable
at 0, so the limit asα → 0+ equals the limit asα → 0− (in this case you couldn’t say anything about
concavity sinceα ≥ 0 is required, but it’s sufficient to take the right-limit case). Finally, we have

f (x + z) ≤ f (x +αz)− f (x)
α

+ f (x)

f (x + z) ≤ lim
α→0+

f (x +αz)− f (x)
α

+ f (x)

= lim
α→0

f (x +αz)− f (x)
α

+ f (x)

= zTDx f (x) + f (x)

d) If f is concave then any critical point (i.e. x s.t. D f (x) = 0) is a global maximizer.

Solution. Following the previous result, for any x, z s.t. x, x + z in the domain of f we have

f (x + z) ≤ f (x) + zTD f (x)

Let x∗ be a critical point and y be any other point in the domain. Take z ≡ y − x so that x + z = y in
the domain of f . Since D f (x∗) = 0, we find

f (y) = f (x∗ + (y − x∗)) ≤ f (x∗) + (y − x∗)TD f (x∗) = f (x∗) + (y − x∗)T0 = f (x∗)

Since f (x∗) ≥ f (y) for every y in the domain, x∗ is a global maximizer.

Remark 2. We focused on maxima but the proofs for minima are analogous.

4. Define the set ∆ = {p ∈ RL
+ : ∑l pl = 1} and the function z+ on ∆ as z+l (p) = max{zl(p), 0}, where

z(p) = {z1(p), z2(p), . . . , zL(p)} is a continuous function, homogeneous of degree 0, and satisfying
p · z(p) = 0 for all p ∈ RL. Denoteα(p) = ∑l

[
pl + z+l

]
.

a) Show that ∆ is a non-empty compact and convex set.

Solution. For non-emptiness, note

pl =
1
L

=⇒ ∑
l

pl = ∑
l

1
L
= 1

We next show that it is convex. Take any p, q ∈ ∆ and let r = αp + (1 −α)q for anyα ∈ [0, 1]. We can
see that

∑
l

rl = ∑
l
[αpl + (1 −α)ql ] = α ∑

l
pl + (1 −α)∑

l
ql = α + (1 −α) = 1

Hence r ∈ ∆, and ∆ is convex. Then the set is bounded below by 0, since pl ≥ 0 for each l, and above
by 1, since p j ≤ p j + ∑l ̸= j pl ≤ 1 (note the sum is positive since pl ≥ 0 for each l). If we can show that

∆ is closed, then we can show that it is compact. (The cleanest proof I saw was to note g : RL → R
defined by g(p) = ∑

L
l=1 pl is continuous; then g−1({1}) = ∆ is closed since {1} is closed.) For my

original proof, take any q /∈ ∆. We know that

∑
l

q ̸= 1 =⇒ ∑
l

q < 1 or ∑
l

q > 1
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We want to show that for any such q there is some ε s.t. every element r ∈ Bε(q) is not in ∆. Suppose

∑l q < 1. It must be that 0 < δ < 1 − ∑l ql for some δ. Take 0 < ε < δ/L and r ∈ Bε(q). We have that
0 ≤ rl ≤ ql +ε < ql + δ/L for each l, and so

∑
l

rl ≤ ∑
l
[ql + δ/L] = ∑

l
ql + δ < 1

Suppose ∑l q > 1. Then 0 < δ < ∑l q − 1 for some δ. Take 0 < ε < δ/L and r ∈ Bε(q). We have that
ql − δ/L ≤ ql −ε ≤ rl for each l, and so

∑
l

rl ≥ ∑
l
[ql − δ/L] = ∑

l
ql − δ > 1

Hence if ∑l q ̸= 1, there is some ε > 0 s.t. for any r ∈ Bε(q), r /∈ ∆, which means that ∆C is open, and
thus ∆ is closed. Since ∆ is closed and bounded, it is compact.

b) Show that f : ∆ → ∆ is continuous in p.

f (p) =
1

α(p)
(

p + z+(p)
)

Solution. We will use the result that if g : A → B is continuous and h : B → C is continuous then
the composition h ◦ g is continuous. Clearly f1(x) = x the identity function is continuous. Since
f2(x) = max{x, 0} is continuous and zl(p) is continuous, z+l (p) = f2(z(p)) is continuous. Hence
pl + z+l (p) is continuous for each l, which means p 7→ p + z+(p) will be continuous.

Since pl + z+l (p) is continuous, α(p) = ∑l pl + z+l (p), the linear combination of L continuous
functions, is continuous. To finish, we have that f3(x) = 1/x is continuous when x ̸= 0, so f3(α(p))
will be continuous wheneverα(p) ̸= 0. However, we have that

α(p) = ∑
l

pl +∑
l

z+l (p) ∑
l

pl = 1 z+l (p) = max{zl(p), 0} ≥ 0

Hence α(p) ≥ 1 > 0. This means that f (p) is the composition of continuous functions, and thus
itself is continuous.

c) Prove that f has a fixed point. (Hint: You can use existing theorems!)

Solution. This follows directly from Brouwer’s fixed point theorem. Any continuous f : ∆ → ∆ with
∆ ⊆ RN non-empty, convex, and compact has a fixed point. I think we just need to show that the
co-domain of f is, indeed, ∆. Here note that for any q = f (p), we have

∑
l

ql =
1

∑l
[
pl + z+l

] ∑
l

[
pl + z+l

]
= 1

d) Use the fact f has a fixed point and the properties of z to argue that ∃p∗ s.t. z+(p∗) · z(p∗) = 0. (Hint:
Use the fact p∗ · z(p∗) = 0.)

Solution. For p∗ ∈ ∆ a fixed point of f we have

p∗ = f (p∗) =
1

α(p∗)
(

p∗ + z+(p∗)
)

p∗ · z(p∗) =
1

1 + ∑l z+(p∗)
(

p∗ + z+(p∗)
)
· z(p∗)

0 =
1

1 + ∑l z+(p∗)
(

p∗ · z(p∗) + z+(p∗) · z(p∗)
)

0 = z+(p∗) · z(p∗)
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e) Conclude thet z(p∗) ≤ 0.

Solution.
z+(p∗) · z(p∗) = ∑

l
zl(p∗)max{zl(p∗), 0}

If zl(p∗) ≤ 0 for any l, then zl(p∗)max{zl(p∗), 0} = 0. Hence

z+(p∗) · z(p∗) = ∑
l:zl>0

zl(p∗)max{zl(p∗), 0}

But if zl > 0 for any ll, then zl(p∗)max{zl(p∗), 0} = zl(p∗)2 > 0, which means

z+(p∗) · z(p∗) > 0

a contradiction. Thus zl(p∗) ≤ 0.

Remark 3. If for consumer i we define the excess demand function zi(p) = xi(p,ωi)−ωi for wealth
ωi and prices p. One way to define general equilibrium is vector of prices s.t. ∑i zi(p) ≤ 0 for all i (i.e.
there is no aggregate excess demand). You have just shown that under some conditions such a price
vector always exists.

5. Use the chain rule and the FTC to prove the Leibniz rule:

d
dx

∫ v(x)

u(x)
f (t)dt = f (v(x))

dv
dx

− f (u(x))
du
dx

Solution. It hadn’t quite dawned on me I have this easier version of Leibniz’ rule. I have a note in the
end about the full form. Now from the FTC since f integrable and continuous on [a, b] we have for any
x ∈ [a, b]

F(x) =
∫ x

a
f (t)dt

is continuously differentiable on (a, b) and

d
dx

F(x) = f (x)

Further,

F(b)− F(a) =
∫ b

a
f (t)dt

If f is integrable on [u(x), v(x)], then we have that∫ v(x)

u(x)
f (t)dt = F(v(x))− F(u(x))

Now we combine the FTC and the chain rule to see that

d
dx

∫ v(x)

u(x)
f (t)dt =

d
dx

F(v(x))− d
dx

F(u(x)) = f (v(x))
dv
dx

− f (u(x))
du
dx

For the full version we have something similar, except f , and therefore F, can depend on x as well. In
this case, we follow similar steps. However, it will be useful to make a distinction when taking partial
derivatives that we evaluate the result at u(x), v(x) after taking partials. Calling the first argument y for
the sake of this:

d
dx

∫ v(x)

u(x)
f (x, t)dt =

d
dx

F(x, v(x))− d
dx

F(x, u(x))
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=

[
∂

∂t
F(y, t)

]
(y,t)=(x,v(x))

dv(x)
dx

−
[

∂

∂t
F(y, t)

]
(y,t)=(x,u(x))

du(x)
dx

+

[
∂

∂y
F(y, t)

]
(y,t)=(x,v(x))

−
[

∂

∂y
F(y, t)

]
(y,t)=(x,u(x))

The first two terms simplify in the same way from the FTC, and for the second term,[
∂

∂y
F(y, t)− ∂

∂y
F(y, t)

](y,t)=(x,v(x))

(y,t)=(x,u(x))
=

∫ v(x)

u(x)

∂

∂x
f (x, t)dt

because we take derivatives with respect to the first argument holding the second argument constant,
so the partial derivative can “go through” the integral as neither the limits nor the function we are
integrating with respect to are changing.

8


	

