Problem Set 3

 $1.$ *Take a collection of functions with* $f_i:\Omega\to\mathbb R^N$ *,* $\Omega\subseteq\mathbb R^M$ *,* $i\in\mathbb N$ *. The collection* $\{f_i\}$ *defines a sequence of funtions, and for each* $x \in \Omega$ *we have a possibly different sequence* $\{f_i(x)\}\$ *in* \mathbb{R}^N *.*

 L et $\{f_i\}$ be a sequence of functions, with $f_i:\Omega\to\mathbb{R}^N$ and $\Omega\subseteq\mathbb{R}^M$. We say that $\{f_i\}$ point-wise *convrges to* $f : \Omega_0 \to \mathbb{R}^N$ *if* $x \in \Omega_0 \implies f_i(x) \to f(x)$ *.*

Let $\{f_i\}$ be a sequence of functions, with $f_i:\Omega\to\mathbb{R}^N$ and $\Omega\subseteq\mathbb{R}^M$. We say that $\{f_i\}$ **uniformly** *convrges to* $f : \Omega_0 \to \mathbb{R}^N$ *if* $\forall \varepsilon > 0$ $\exists I_0(\varepsilon)$ *s.t. for* $i > I_0(\varepsilon)$ *we have* $||f_i(x) - f(x)|| < \varepsilon$ *.*

- *a)* Let $f_i(x) = x/i$ *and* $f(x) = 0$ *. Check that* $f_i \rightarrow f$ *point-wise.*
- *b) Show fⁱ defined above does not converge uniformly to f .*
- *c) Show uniform convergence implies point-wise convergence.*
- 2. Let $A \subseteq \mathbb{R}^N$ be a convex set. $f : A \to \mathbb{R}^N$ is quasiconcave if for any $x, y \in A$ and $\alpha \in [0,1]$ we have

$$
f(\alpha x + (1 - \alpha)y) \ge \min\{f(x), f(y)\}\
$$

and strictly quasiconcave if the above holds strictly. Show if f is quasiconcave then $\operatorname*{argmax}_{x \in A} f(x)$ is a *convex set (recall the empty set is convex by vacuity). Further show that if f is strictly quasiconcave then* $\argmax_{x \in A} f(x)$ *is a singleton or empty.*

- 3. *Consider a continuous function* $f : \mathbb{R}^N \to \mathbb{R}$ *. Show*
	- *a)* If f is differentiable and $x^* \in \mathbb{R}^N$ is a local maximizer or minimizer of f , then $\nabla f(x^*) = 0$.
	- *b)* If f is twice continuously differentiable and $x^* \in \mathbb{R}^N$ is s.t. $\nabla f(x^*) = 0$, then if x^* is a local maximizer *the symmetric N* \times *N Hessian* $D^2f(x^*)$ *<i>is negative semidefinite. Extra credit: If* $D^2f(x^*)$ *is negative definite then x* ∗ *is a strict local maximizer. (Hint: I used a Taylor expansion without the explicit remainder formula. For the extra-credit, I additionally leveraged the fact a matrix is ND iff it has all strictly negative eigenvalues, but there may be a way to do it without that.)*
	- *c) If f* is concave then $f(x+z) \le f(x) + z^T D f(x)$ for any *x*, *z*.
	- *d)* If f is concave then any critical point (i.e. *x s.t.* $Df(x) = 0$) is a global maximizer.
- 4. *Define the set* ∆ = {*p* ∈ R*^L* ⁺ : ∑*^l p^l* = 1} *and the function z* ⁺ *on* ∆ *as z* + $l_l^+(p) = \max\{z_l(p), 0\}$, where $z(p) = \{z_1(p), z_2(p), \ldots, z_L(p)\}\$ is a continuous function, homogeneous of degree 0, and satisfying $p \cdot z(p) = 0$ for all $p \in \mathbb{R}^L$. Denote $\alpha(p) = \sum_l [p_l + z_l^+]$ *l .*
	- *a) Show that* ∆ *is a non-empty compact and convex set.*
	- *b) Show that* $f : \Delta \to \Delta$ *is continuous in p.*

$$
f(p) = \frac{1}{\alpha(p)} (p + z^+(p))
$$

c) Prove that f has a fixed point. (Hint: You can use existing theorems!)

- *d)* Use the fact f has a fixed point and the properties of *z* to argue that $\exists p^*$ s.t. $z^+(p^*) \cdot z(p^*) = 0$. (Hint: *Use the fact* $p^* \cdot z(p^*) = 0$ *.*)
- *e*) *Conclude thet* $z(p^*) \leq 0$ *.*

Remark 1. If for consumer i we define the excess demand function $z_i(p) = x_i(p, \omega_i) - \omega_i$ for wealth ω_i and prices p . One way to define general equilibrium is vector of prices s.t. $\sum_i z_i(p) \leq 0$ for all *i* (i.e. there is no aggregate excess demand). You have just shown that under some conditions such a price vector always exists. \Box

5. *Use the chain rule and the FTC to prove the Leibniz rule:*

$$
\frac{d}{dx}\int_{u(x)}^{v(x)}f(t)dt = f(v(x))\frac{dv}{dx} - f(u(x))\frac{du}{dx}
$$