Problem Set 1

- 1. Show, by induction, the Bernoulli inequality: $x > -1 \implies (1+x)^n \ge 1 + nx \ \forall n \in \mathbb{N}$
- 2. Show, by contradiction, that the set of prime numbers is infinite.
- 3. Show the supremum of a set of real numbers is unique.
- 4. Let *A* and *B* be non-empty real-valued sets bounded above. Let $C = \{a + b, a \in A, b \in B\}$. Show $\sup C = \sup A + \sup B$
- 5. Given a real sequence (a_i) , define

$$b_n = \sum_{j=1}^n a_j$$
 $c_n = \sum_{j=1}^n |a_j|$

Show (b_m) converges if (c_m) converges. Give an example of (a_i) to show the converse may not hold.

6. Show if (x_m) is a bounded and monotonic real sequence then (x_m) converges.